
Intro	to	Neural	Networks

Lisbon	Machine	Learning	School	
15	July	2023

What’s	in	this	tutorial

• We	will	learn	about	
–What	is	a	neural	network:	historical	perspective	
–What	can	neural	networks	model	
–What	do	they	actually	learn

Instructor

• Bhiksha	Raj	
				Professor,	
				Language	Technologies	Institute	
				(Also:	MLD,	ECE,	Music	Tech)	
				Carnegie	Mellon	Univ.	

					Also:		Mohammed	bin	Zayed	University	of	AI,	UAE	

• bhiksha@cs.cmu.edu

	
Part	1:	What	is	a	neural	network

Neural	Networks	are	taking	over!

• Neural	networks	have	become	one	of	the	
major	thrust	areas	recently	in	various	pattern	
recognition,	prediction,	and	analysis	problems	

• In	many	problems	they	have	established	the	
state	of	the	art	
– Often	exceeding	previous	benchmarks	by	large	
margins

Breakthrough	successes	with	neural	
networks

Breakthrough	successes	with	neural	
networks

Breakthrough	successes	with	neural	
networks

8

Breakthrough	successes	with	neural	
networks

Breakthrough	successes	with	neural	
networks

And	Today

Successes	with	neural	networks
• And	a	variety	of	other	problems:	

– Biochemistry	and	medicine	
• Protein	structure	and	drug	discovery	

– Public	health	and	sociology	
• Predicting	epidemics,	analyzing		and	predicting	human	behaviors	

– Driving	and	Defence!	
• Self-driving	cars,	Drones,	F16s	guided	by	

– Speech	processing	
– Even	predicting	stock	markets!	

• All	powered	by	deep	neural	networks

Neural	nets	and	the	employment	market

This guy didn’t know
about neural networks
(a.k.a deep learning)

This guy learned
about neural networks
(a.k.a deep learning)

So	what	are	neural	networks??

• What	are	these	boxes?

N.Net
Voice		
signal Transcription N.NetImage Text	caption

N.Net
Game	
State Next	move

So	what	are	neural	networks??

• It	begins	with	this..

So	what	are	neural	networks??

• Or	even	earlier..	with	this..

“The Thinker!”
by Augustin Rodin

The	magical	capacity	of	humans

• Humans	can	
– Learn	
– Solve	problems	
– Recognize	patterns	
– Create	
– Cogitate	
– …	

• Worthy	of	emulation	
• But	how	do	humans	“work“?

Dante!

Cognition	and	the	brain..

• “If	the	brain	was	simple	enough	to	be	
understood	-	we	would	be	too	simple	to	
understand	it!”		
–Marvin	Minsky

Early	Models	of	Human	Cognition

• Associationism	
– Humans	learn	through	association	

• 400BC-1900AD:	Plato,		David	Hume,		Ivan	Pavlov..

What	are	“Associations”

• Lightning	is	generally	followed	by	thunder	
– Ergo	–	“hey	here’s	a	bolt	of	lightning,		we’re	going	to	hear	thunder”	
– Ergo	–	“We	just	heard	thunder;	did	someone	get	hit	by	lightning”?	

• Associations!	
– Actually	a	pretty	good	theory	that	still	applies	

• But	where	and	how	do	we	store	these	associations?

Observation:	The	Brain

• Mid	1800s:		The	brain	is	a	mass	of	
interconnected	neurons

Brain:	Interconnected	Neurons

• Many	neurons	connect	in	to	each	neuron	
• Each	neuron	connects	out	to	many	neurons

Enter	Connectionism

• Alexander	Bain,	philosopher,	mathematician,	logician,	
linguist,	professor	

• 1873:	The	information	is	in	the	connections	
– The	mind	and	body	(1873)

Bain’s	Idea	:	Neural	Groupings

• Neurons	excite	and	stimulate	each	other	
• Different	combinations	of	inputs	can	result	in	
different	outputs

Bain’s	Idea	:	Neural	Groupings

• Different	intensities	of	
activation	of	A	lead	to	
the	differences	in	
when	X	and	Y	are	
activated

Bain’s	Idea	2:	Making	Memories

• “when	two	impressions	concur,	or	closely	
succeed	one	another,	the	nerve	currents	find	
some	bridge	or	place	of	continuity,	better	or	
worse,	according	to	the	abundance	of	nerve	
matter	available	for	the	transition.”	

• Predicts	“Hebbian”	learning	(half	a	century	
before	Hebb!)

Bain’s	Doubts
• “The	fundamental	cause	of	the	trouble	is	that	in	the	modern	world	

the	stupid	are	cocksure	while	the	intelligent	are	full	of	doubt.”	
– Bertrand	Russell		

• In	1873,	Bain	postulated	that	there	must	be	one	million	neurons	and	5	
billion	connections	relating	to	200,000	“acquisitions”	

• In	1883,	Bain	was	concerned	that	he	hadn’t	taken	into	account	the	
number	of	“partially	formed	associations”	and	the	number	of	neurons	
responsible	for	recall/learning	

• By	the	end	of	his	life	(1903),	recanted	all	his	ideas!	
– Too	complex;		the	brain	would	need	too	many	neurons	and	connections

Bain’s	Doubts
• “The	fundamental	cause	of	the	trouble	is	that	in	the	modern	world	

the	stupid	are	cocksure	while	the	intelligent	are	full	of	doubt.”	
– Bertrand	Russell		

• In	1873,	Bain	postulated	that	there	must	be	one	million	neurons	and	5	
billion	connections	relating	to	200,000	“acquisitions”	

• In	1883,	Bain	was	concerned	that	he	hadn’t	taken	into	account	the	
number	of	“partially	formed	associations”	and	the	number	of	neurons	
responsible	for	recall/learning	

• By	the	end	of	his	life	(1903),	recanted	all	his	ideas!	
– Too	complex;		the	brain	would	need	too	many	neurons	and	connections

In	reality:		The	typical	brain	has	~80	billion	neurons	and	100	trillion	connections!

Connectionism	lives	on..

• The	human	brain	is	a	connectionist	machine	
– Bain,	A.	(1873).	Mind	and	body.	The	theories	of	their	
relation.	London:	Henry	King.	

– Ferrier,	D.	(1876).	The	Functions	of	the	Brain.	London:	Smith,	
Elder	and	Co	

• Neurons	connect	to	other	neurons.			
The	processing/capacity	of	the	brain		
is	a	function	of	these	connections	

• Connectionist	machines	emulate	this	structure

Connectionist	Machines

• Network	of	processing	elements	
• All	world	knowledge	is	stored	in	the	connections	
between	the	elements

Connectionist	Machines

• Neural	networks	are	connectionist	machines	
– As	opposed	to	Von	Neumann	Machines	

• The	machine	has	many	non-linear	processing	units	
– The	program	is	the	connections	between	these	units	

• Connections	may	also	define	memory

PROCESSOR
PROGRAM

DATA

MemoryProcessing	
unit

Von	Neumann/Harvard	Machine

NETWORK

Neural	Network

Recap

• Neural-network-based	AI	has	taken	over	most	AI	tasks	
• Neural	networks	originally	began	as	computational	models	of	

the	brain	
– Or	more	generally,	models	of	cognition	

• The	earliest	model	of	cognition	was	associationism	
• The	more	recent	model	of	the	brain	is	connectionist	

– Neurons	connect	to	neurons	
– The	workings		of	the	brain	are	encoded	in	these	connections	

• Current	neural	network	models	are	connectionist	machines

Connectionist	Machines

• Network	of	processing	elements	
• All	world	knowledge	is	stored	in	the	
connections	between	the	elements

Connectionist	Machines

• Connectionist	machines	are	networks	of	units..	

• We	need	a	model	for	the	units

Modelling	the	brain

• What	are	the	units?	
• A	neuron:	

• Signals	come	in	through	the	dendrites	into	the	Soma	
• A	signal	goes	out	via	the	axon	to	other	neurons	

– Only	one	axon	per	neuron	

• Factoid	that	may	only	interest	me:	Neurons	do	not	undergo	cell	division	
• Factoid	that	may	only	interest	me:	Being	called	a	“fathead”	may	be	a	

compliment

Dendrites

Soma

Axon

McCullough	and	Pitts

• The	Doctor	and	the	Hobo..	
–Warren	McCulloch:		Neurophysician	
–Walter	Pitts:	Homeless	wannabe	logician	who	
arrived	at	his	door

The	McCulloch	and	Pitts	model

• A	mathematical	model	of	a	neuron	
– McCulloch,	W.S.	&	Pitts,	W.H.	(1943).	A	Logical	Calculus	
of	the	Ideas	Immanent	in	Nervous	Activity,	Bulletin	of	
Mathematical	Biophysics,	5:115-137,	1943	
• Pitts	was	only	20	years	old	at	this	time	

– Threshold	Logic

A single neuron

Synaptic	Model

• Excitatory	synapse:		Transmits	weighted	input	
to	the	neuron	

• Inhibitory	synapse:	Any	signal	from	an	
inhibitory	synapse	forces	output	to	zero	
– The	activity	of	any	inhibitory	synapse	absolutely	
prevents	excitation	of	the	neuron	at	that	time.	
• Regardless	of	other	inputs

Boolean	Gates
Simple “networks”
of neurons can perform
Boolean operations

Criticisms

• Several..	
– Claimed	their	machine	could	emulate	a	Turing	
machine	

• Didn’t	provide	a	learning	mechanism..

Donald	Hebb

• “Organization	of	behavior”,	1949	
• A	learning	mechanism:	
– Neurons	that	fire	together	wire	together

Hebbian	Learning

• If	neuron	 	repeatedly	triggers	neuron	 ,	the	synaptic	knob	
connecting	 	to	 	gets	larger	

• In	a	mathematical	model:	

– Weight	of	 th	neuron’s	input	to	output	neuron	 	

• This	simple	formula	is	actually	the	basis	of	many	learning	algorithms	
in	ML

𝑥𝑖 𝑦
𝑥𝑖 𝑦

𝑤𝑖 = 𝑤𝑖 + 𝜂𝑥𝑖𝑦
𝑖 𝑦

Dendrite	of	neuron	Y

Axonal	connection	from	
neuron	X

A	better	model

• Frank	Rosenblatt	
– Psychologist,	Logician	
– Inventor	of	the	solution	to	everything,	aka	the	Perceptron	(1958)

Simplified	mathematical	model

• Number	of	inputs	combine	linearly	
– Threshold	logic:		Fire	if	combined	input	exceeds	
threshold	

𝑌 = { 1 𝑖𝑓 ∑𝑖 𝑤𝑖𝑥𝑖 + 𝑏 > 0
0 𝑒𝑙𝑠𝑒

His	“Simple”	Perceptron
• Originally	assumed	could	represent	any	Boolean	circuit	and	

perform	any	logic	
– “the	embryo	of	an	electronic	computer	that	[the	Navy]	expects	will	

be	able	to	walk,	talk,	see,	write,	reproduce	itself	and	be	conscious	of	
its	existence,”	New	York	Times	(8	July)	1958	

– “Frankenstein	Monster	Designed	by	Navy	That	Thinks,”	Tulsa,	
Oklahoma	Times	1958

Also	provided	a	learning	algorithm

• Boolean	tasks	
• Update	the	weights	whenever	the	perceptron	
output	is	wrong	

• Proved	convergence

𝐰 = 𝐰 + 𝜂(𝑑(𝐱) − 𝑦(𝐱))𝐱
Sequential	Learning:	
	 	 	is	the	desired	output	in	response	to	input	 	
	 	 	is	the	actual	output	in	response	to	

𝑑(𝑥) 𝑥
𝑦(𝑥) 𝑥

Perceptron

• Easily	shown	to	mimic	any	Boolean	gate	

• But…

X

Y

1

1
2

X

Y

1

1
1

0X
-1X ∧ Y

X ∨ Y

X̄

Perceptron

X

Y

?

?
? X⨁Y

No solution for XOR!
Not universal!

• Rosenblatt,	in	fact,	knew	this	
– His	“perceptron”	is,	in	fact,	a	3-layer	network

A	single	neuron	is	not	enough

• Individual	elements	are	weak	computational	elements	
– Marvin	Minsky	and	Seymour	Papert,	1969,		Perceptrons:	An	
Introduction	to	Computational	Geometry	

• Networked	elements	are	required

Multi-layer	Perceptron!

• XOR
– The	first	layer	is	a	“hidden”	layer

50

1

1

1

-1

1

-1

X

Y

1

X⨁Y

-1

2

X ∨ Y

X̄ ∨ Ȳ

Hidden	Layer

A	more	generic	model

• A	“multi-layer”	perceptron	
• Can	compose	arbitrarily	complicated	Boolean	
functions!	
– More	on	this	in	the	next	part

((𝐴�̄�𝑍) |(𝐴�̄�))((𝑋 𝑌) | ¯(𝑋𝑍))

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

Story	so	far
• Neural	networks	began	as	computational	models	of	the	brain	
• Neural	network	models	are	connectionist	machines	

– The	comprise	networks	of	neural	units	

• McCullough	and	Pitt	model:	Neurons	as	Boolean	threshold	units	
– Models	the	brain	as	performing	propositional	logic	
– But	no	learning	rule	

• Hebb’s	learning	rule:	Neurons	that	fire	together	wire	together	
– Unstable	

• Rosenblatt’s	perceptron	:	A	variant	of	the	McCulloch	and	Pitt	neuron	with	a	
provably	convergent	learning	rule	
– But	individual	perceptrons	are	limited	in	their	capacity	(Minsky	and	Papert)	

• Multi-layer	perceptrons	can	model	arbitrarily	complex	Boolean	functions

But	our	brain	is	not	Boolean

• We	have	real	inputs	
• We	make	non-Boolean	inferences/predictions

The	perceptron	with	real	inputs

• x1…xN	are	real	valued

• W1…WN	are	real	valued

• Unit	“fires”	if	weighted	input	exceeds	a	threshold

x1
x2

x3

xN

The	perceptron	with	real	inputs	
and	a	real	output

• x1…xN	are	real	valued
• W1…WN	are	real	valued
• The	output	y	can	also	be	real	valued	
– Sometimes	viewed	as	the	“probability”	of	firing	
– Is	useful	to	continue	assuming	Boolean	outputs	though

sigmoid 𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑
𝑖

𝑤𝑖𝑥𝑖)

x1
x2

x3

xN

A	Perceptron	on	Reals

• A	perceptron	operates	on		
real-valued	vectors	
– This	is	a	linear	classifier 56

x1

x2 w1x1+w2x2=T

𝑦 = {1 𝑖𝑓 ∑𝑖 𝑤𝑖x𝑖 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

x1
x2

1
0

x1

x2

x3

xN

Boolean	functions	with	a	real	perceptron

• Boolean	perceptrons	are	also	linear	classifiers	
– Purple	regions	have	output	1	in	the	figures	
– What	are	these	functions	
– Why	can	we	not	compose	an	XOR?

Y

X

0,0

0,1

1,0

1,1

Y

X

0,0

0,1

1,0

1,1

X

Y

0,0

0,1

1,0

1,1

Composing	complicated	“decision”	
boundaries

• Build	a	network	of	units	with	a	single	output	
that	fires	if	the	input	is	in	the	coloured	area

58

x1

x2 Can now be composed into
“networks” to compute arbitrary
classification “boundaries”

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

59

x1

x2

x1x2

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

60

x1

x2

x1x2

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

61

x1

x2

x1x2

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

62

x1

x2

x1x2

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

63

x1

x2

x1x2

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

64

x1

x2

x1

x2
AND

5

4
4

4

4

4

3

3

3

33 x1x2

𝑁

∑
𝑖=1

y𝑖 ≥ 5?

y1 y5y2 y3 y4

More	complex	decision	boundaries

• Network	to	fire	if	the	input	is	in	the	yellow	area	
– “OR”	two	polygons	
– A	third	layer	is	required

65

x2

AND AND

OR

x1 x1 x2

Complex	decision	boundaries

• Can	compose	very	complex	decision	boundaries	
– How	complex	exactly?		More	on	this	in	the	next	part

66

Complex	decision	boundaries

• Classification	problems:		finding	decision	
boundaries	in	high-dimensional	space

67

784	dimensions	
(MNIST)

784	dimensions

2
𝑵𝒐𝒕 𝟐

Story	so	far
• MLPs	are	connectionist	computational	models	

– Individual	perceptrons	are	computational	equivalent	of	neurons	
– The	MLP	is	a	layered	composition	of	many	perceptrons	

• MLPs	can	model	Boolean	functions	
– Individual	perceptrons	can	act	as	Boolean	gates	
– Networks	of	perceptrons	are		Boolean	functions	

• MLPs	are	Boolean	machines	
– They	represent	Boolean	functions	over	linear	boundaries	
– They	can	represent	arbitrary		decision	boundaries	
– They	can	be	used	to	classify	data

68

So	what	does	the	perceptron	really	model?

• Is	there	a	“semantic”	interpretation?

Lets	look	at	the	weights

• What	do	the	weights	tell	us?	
– The	neuron	fires	if	the	inner	product	between	the	
weights	and	the	inputs	exceeds	a	threshold

70

x1
x2
x3

xN

𝑦 = {1 𝑖𝑓 ∑𝑖 𝑤𝑖x𝑖 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

𝑦 = {1 𝑖𝑓 𝐱𝑇 𝐰 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

The	weight	as	a	“template”

• The	perceptron	fires	if	the	input	is	within	a	specified	angle	of	
the	weight	

• Neuron	fires	if	the	input		vector	is	close	enough	to	the	weight	
vector.	
– If	the	input	pattern	matches	the	weight	pattern	closely	enough

71

w

𝑿𝑻𝑾 > 𝑻
𝐜𝐨𝐬𝜽 >

𝑻
𝑿

𝜽 < 𝒄𝒐𝒔−𝟏
𝑻
𝑿

x1
x2
x3

xN

The	weight	as	a	template

• If	the	correlation	between	the	weight	pattern	
and	the	inputs	exceeds	a	threshold,	fire	

• The	perceptron	is	a	correlation	filter!	
72

W X X

Correlation	=	0.57 Correlation	=	0.82𝑦 = {1 𝑖𝑓 ∑𝑖 𝑤𝑖x𝑖 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

The	MLP	as	a	Boolean	function	over	feature	
detectors

• The	input	layer	comprises	“feature	detectors”	
– Detect	if	certain	patterns	have	occurred	in	the	input	

• The	network	is	a	Boolean	function	over	the	feature	detectors	
• I.e.	it	is	important	for	the	first	layer	to	capture	relevant	patterns

73

DIGIT	OR	NOT?

The	MLP	as	a	cascade	of	feature	detectors

• The	network	is	a	cascade	of	feature	detectors	
– Higher	level	neurons	compose	complex	templates	from	
features	represented	by	lower-level	neurons

74

DIGIT	OR	NOT?

Story	so	far
• Multi-layer	perceptrons	are	connectionist	computational	models	
• MLPs	are	Boolean	machines	

– They	can	model	Boolean	functions	
– They	can	represent	arbitrary		decision	boundaries	over	real	inputs	

• Perceptrons	are	correlation	filters	
– They	detect	patterns	in	the	input	

• MLPs	are	Boolean	formulae	over	patterns	detected	by	perceptrons	
– Higher-level	perceptrons	may	also	be	viewed	as	feature	detectors	

• Extra:	MLP	in	classification	
– The	network	will	fire	if	the	combination	of		the	detected	basic	features	

matches	an	“acceptable”	pattern	for	a	desired	class	of	signal	
• E.g.		Appropriate	combinations	of	(Nose,	Eyes,	Eyebrows,	Cheek,	Chin)	à Face

75

MLP	as	a	continuous-valued	regression

• A	simple	3-unit	MLP	with	a	“summing”	output	unit	can	generate	a	
“square	pulse”	over	an	input	
– Output	is	1	only	if	the	input	lies	between	T1	and	T2	

– T1	and	T2	can	be	arbitrarily	specified
76

+x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)

MLP	as	a	continuous-valued	regression

• A	simple	3-unit	MLP	can	generate	a	“square	pulse”	over	an	input	
• An	MLP	with	many	units	can	model	an	arbitrary	function	over	an	input	

– To	arbitrary	precision	
• Simply	make	the	individual	pulses	narrower	

• This	generalizes	to	functions	of	any	number	of	inputs	(next	part)
77

x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)
x

+× h1
× h2

× h𝑛

h1

h2

h𝑛

Story	so	far
• Multi-layer	perceptrons	are	connectionist	
computational	models	

• MLPs	are	classification	engines	
– They	can	identify	classes	in	the	data	

– Individual	perceptrons	are	feature	detectors	

– The	network	will	fire	if	the	combination	of		the	detected	
basic	features	matches	an	“acceptable”	pattern	for	a	
desired	class	of	signal	

• MLP	can	also	model	continuous	valued	functions
78

Neural	Networks:		
Part	2:	What	can	a	network	represent

Recap:	The	perceptron

• A	threshold	unit	
– “Fires”	if	the	weighted	sum	of	inputs	and	the	
“bias”	T	is	positive

𝑦 = {1 𝑖𝑓 z ≥ 0
0 𝑒𝑙𝑠𝑒

+.

x1

x2

x3

x𝑁 −𝑇

𝑧 𝑦

𝑧 = ∑
𝑖

w𝑖x𝑖 − 𝑇

𝑤1
𝑤2

𝑤3

𝑤𝑁

The	“soft”	perceptron

• A	“squashing”	function	instead	of	a	threshold	
at	the	output	
– The	sigmoid	“activation”	replaces	the	threshold	

• Activation:	The	function	that	acts	on	the	weighted	
combination	of	inputs	(and	threshold)

𝑦 =
1

1 + 𝑒𝑥𝑝(−𝑧)

+.

x1

x2

x3

x𝑁 −𝑇

𝑧 𝑦

𝑤1
𝑤2

𝑤3

𝑤𝑁

𝑧 = ∑
𝑖

w𝑖x𝑖 − 𝑇

Other	“activations”

• Does	not	always	have	to	be	a	squashing	function	
• We	will	continue	to	assume	a	“threshold”	activation	in	this	

lecture

sigmoid tanh

+.

x1

x2

x3

x𝑁 𝑏

𝑧
𝑦

𝑤1
𝑤2

𝑤3

𝑤𝑁

Recap:	the	multi-layer	perceptron

• A	network	of	perceptrons	
– Generally	“layered”

Aside:		Note	on	“depth”

• What	is	a	“deep”	network	
– And	what	is	a	“layer”?

Deep	Structures
• In	any	directed	network	of	computational	elements	with	input	

source	nodes	and	output	sink	nodes,	“depth”	is	the	length	of	
the	longest	path	from	a	source	to	a	sink	
– A	“source”	node	in	a	directed	graph	is	a	node	that	has	only	outgoing	

edges	
– A	“sink”	node	is	a	node	that	has	only	incoming	edges

• Left:	Depth	=	2.								Right:	Depth	=	3
85

Deep	Structures
• Layered	deep	structure	

– The	input	is	the	“source”,		
– The	output	nodes	are	“sinks”

• “Deep”	à Depth	greater	than	2	
• “Depth”	of	a	layer	–	the	depth	of	the	neurons	in	the	layer	w.r.t.	input

86

Input: Black
Layer 1: Red
Layer 2: Green
Layer 3: Yellow
Layer 4: Blue

The	multi-layer	perceptron

• Inputs	are	real	or	Boolean	stimuli	
• Outputs	are	real	or	Boolean	values	

– Can	have	multiple	outputs	for	a	single	input		
• What	can	this	network	compute?	

– What	kinds	of	input/output	relationships	can	it	model?

MLPs	approximate	functions

• MLPs	can	compose	Boolean	functions	
• MLPs	can	compose	real-valued	functions	
• What	are	the	limitations?

((𝐴�̄�𝑍) |(𝐴�̄�))((𝑋 𝑌) | ¯(𝑋𝑍))

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

x

h2

h𝑛

The	MLP	as	a	Boolean	function

• How	well	do	MLPs	model	Boolean	functions?

The	perceptron	as	a	Boolean	gate

• A	perceptron	can	model	any	simple	binary	
Boolean	gate

X

Y

1

1
2

X

Y

1

1
1

0X
-1X ∧ Y

X ∨ Y

X̄

Perceptron	as	a	Boolean	gate

• The	universal	AND	gate	
– AND	any	number	of	inputs	
• Any	subset	of	who	may	be	negated

𝑋1

1
1

L (
𝐿

⋀
𝑖=1

𝑋𝑖) ∧ (
𝑁

⋀
𝑖=𝐿+1

�̄�𝑖)
𝑋2

𝑋𝐿

⋮

𝑋𝐿+1

𝑋𝐿+2

𝑋𝑁

⋮

1
-1
-1

-1 Will fire only if	X1 .. XL	are all 1		
and	XL+1 .. XN	are all 0

Perceptron	as	a	Boolean	gate

• The	universal	OR	gate	
– OR	any	number	of	inputs	
• Any	subset	of	who	may	be	negated

𝑋1

1
1

L-N+1 (
𝐿

⋁
𝑖=1

𝑋𝑖) ∨ (
𝑁

⋁
𝑖=𝐿+1

�̄�𝑖)
𝑋2

𝑋𝐿

⋮

𝑋𝐿+1

𝑋𝐿+2

𝑋𝑁

⋮

1
-1
-1

-1 Will fire only if any of	X1 .. XL	are 1		
or any of	XL+1 .. XN	are 0

Perceptron	as	a	Boolean	Gate

• Universal	OR:	
– Fire	if	any	K-subset	of	inputs	is	“ON”

𝑋1

1
1

K

𝑋2

𝑋𝐿

⋮

𝑋𝐿+1

𝑋𝐿+2

𝑋𝑁

⋮

1
1
1

1

Will fire only if the total number of
of	X1 .. XN	that	are 1	is at least K

The	perceptron	is	not	enough

• Cannot	compute	an	XOR

X

Y

?

?
? X⨁Y

Multi-layer	perceptron

• MLPs	can	compute	the	XOR

1

1

1

-1

1

-1

X

Y

1

X⨁Y

-1

2

X ∨ Y

X̄ ∨ Ȳ

Hidden	Layer

Multi-layer	perceptron

• MLPs	can	compute	more	complex	Boolean	functions		
• MLPs	can	compute	any	Boolean	function	

– Since	they	can	emulate	individual	gates	

• MLPs	are	universal	Boolean	functions

((𝐴�̄�𝑍) |(𝐴�̄�))((𝑋 𝑌) | ¯(𝑋𝑍))

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

MLP	as	Boolean	Functions

• MLPs	are	universal	Boolean	functions	
– Any	function	over	any	number	of	inputs	and	any	number	of	
outputs	

• But	how	many	“layers”	will	they	need?

((𝐴�̄�𝑍) |(𝐴�̄�))((𝑋 𝑌) | ¯(𝑋𝑍))

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

Truth table shows all input combinations
for which output is 1

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Expressed	in	disjunctive	normal	form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

How	many	layers	for	a	Boolean	MLP?

• Any	truth	table	can	be	expressed	in	this	manner!	
• A	one-hidden-layer	MLP	is	a	Universal	Boolean	Function

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth	Table
Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

But what is the largest number of perceptrons required in the
single hidden layer for an N-input-variable function?

											
𝑌 = �̄�1�̄�2𝑋3𝑋4�̄�5 + �̄�1𝑋2�̄�3𝑋4𝑋5 + �̄�1𝑋2𝑋3�̄�4�̄�5+

𝑋1�̄�2�̄�3�̄�4𝑋5 + 𝑋1�̄�2𝑋3𝑋4𝑋5 + 𝑋1𝑋2�̄�3�̄�4𝑋5

Reducing	a	Boolean	Function

• DNF	form:	
– Find	groups	
– Express	as	reduced	DNF

This is a “Karnaugh Map”

It represents a truth table as a grid
Filled boxes represent input combinations
for which output is 1; blank boxes have
output 0

Adjacent boxes can be “grouped” to
reduce the complexity of the DNF formula
for the table

00 01 11 10

00

01

11

10

YZ
WX

Reducing	a	Boolean	Function
00 01 11 10

00

01

11

10

YZ
WX

Basic DNF formula will require 7 terms

Reducing	a	Boolean	Function

• Reduced	DNF	form:	
– Find	groups	
– Express	as	reduced	DNF

𝑂 = �̄��̄� + �̄�𝑋�̄� + �̄�𝑌�̄�
00 01 11 10

00

01

11

10

YZ
WX

Reducing	a	Boolean	Function

• Reduced	DNF	form:	
– Find	groups	
– Express	as	reduced	DNF

𝑂 = �̄��̄� + �̄�𝑋�̄� + �̄�𝑌�̄�
00 01 11 10

00

01

11

10

YZ
WX

W X Y Z

Largest	irreducible	DNF?

• What	arrangement	of	ones	and	zeros	simply	
cannot	be	reduced	further?

00 01 11 10

00

01

11

10

YZ
WX

Largest	irreducible	DNF?

• What	arrangement	of	ones	and	zeros	simply	
cannot	be	reduced	further?

00 01 11 10

00

01

11

10

YZ
WX

Largest	irreducible	DNF?

• What	arrangement	of	ones	and	zeros	simply	
cannot	be	reduced	further?

00 01 11 10

00

01

11

10

YZ
WX How many neurons

in a DNF (one-
hidden-layer) MLP
for this Boolean
function?

• How many neurons in a DNF (one-hidden-layer)
MLP for this Boolean function of 6 variables?

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width	of	a	single-layer	Boolean	MLP

• How	many	neurons	in	a	DNF	(one-hidden-
layer)	MLP	for	this	Boolean	function

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width	of	a	single-layer	Boolean	MLP

Can be generalized: Will require 2N-1
perceptrons in hidden layer
Exponential in N

• How	many	neurons	in	a	DNF	(one-hidden-
layer)	MLP	for	this	Boolean	function

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width	of	a	single-layer	Boolean	MLP

Can be generalized: Will require 2N-1
perceptrons in hidden layer
Exponential in N

How many units if we use multiple layers?

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZ

UV

Width	of	a	deep	MLP
00 01 11 10

00

01

11

10

YZ
WX

	𝑂 = 𝑊 ⊕ 𝑋 ⊕ 𝑌 ⊕ 𝑍 	𝑂 = 𝑈 ⊕ 𝑉 ⊕ 𝑊 ⊕ 𝑋 ⊕ 𝑌 ⊕ 𝑍

Multi-layer	perceptron	XOR

• An	XOR	takes	three	perceptrons

1

1

1

-1

1

-1

X

Y

1

X⨁Y

-1

2

X ∨ Y

X̄ ∨ Ȳ

Hidden	Layer

• An	XOR	needs	3	perceptrons	
• This	network	will	require	3x3	=	9	perceptrons

Width	of	a	deep	MLP
00 01 11 10

00

01

11

10

YZ
WX

	𝑂 = 𝑊 ⊕ 𝑋 ⊕ 𝑌 ⊕ 𝑍

W X Y Z

9 perceptrons

• An	XOR	needs	3	perceptrons	
• This	network	will	require	3x5	=	15	perceptrons

Width	of	a	deep	MLP

U V W X Y Z

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZ

UV

	𝑂 = 𝑈 ⊕ 𝑉 ⊕ 𝑊 ⊕ 𝑋 ⊕ 𝑌 ⊕ 𝑍

15 perceptrons

• An	XOR	needs	3	perceptrons	
• This	network	will	require	3x5	=	15	perceptrons

Width	of	a	deep	MLP

U V W X Y Z

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZ

UV

	𝑂 = 𝑈 ⊕ 𝑉 ⊕ 𝑊 ⊕ 𝑋 ⊕ 𝑌 ⊕ 𝑍
More generally, the XOR of N
variables will require 3(N-1)
perceptrons!!

• How	many	neurons	in	a	DNF	(one-hidden-
layer)	MLP	for	this	Boolean	function

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width	of	a	single-layer	Boolean	MLP

Single hidden layer: Will require 2N-1+1
perceptrons in all (including output unit)
Exponential in N

Will require 3(N-1) perceptrons in a deep
network
Linear in N!!!
Can be arranged in only 2log2(N) layers

A	better	representation

• Only	 	layers	
– By	pairing	terms	
– 2	layers	per	XOR

2log2𝑁

𝑂 = 𝑋1 ⊕ 𝑋2 ⊕ … ⊕ 𝑋𝑁

	𝑋1 	𝑋𝑁

											 	 …
𝑂 = (((((𝑋1 ⊕ 𝑋2) ⊕ (𝑋1 ⊕ 𝑋2)) ⊕

((𝑋5 ⊕ 𝑋6) ⊕ (𝑋7 ⊕ 𝑋8))) ⊕ (((

	𝑍1 	𝑍𝑀

The	challenge	of	depth

• Using	only	K	hidden	layers	will	require	O(2(N-K/2))	neurons	in	the	Kth	layer	
– Because	the	output	can	be	shown	to	be	the	XOR	of	all	the	outputs	of	the	K-1th	hidden	

layer		
– I.e.	reducing	the	number	of	layers	below	the	minimum	will	result	in	an	exponentially	

sized	network	to	express	the	function	fully	
– A	network	with	fewer	than	the	required	number	of	neurons	cannot	model	the	

function

𝑂 = 𝑋1 ⊕ 𝑋2 ⊕ … ⊕ 𝑋𝑁……
	 = 𝑍1 ⊕ 𝑍2 ⊕ … ⊕ 𝑍𝑀

	𝑋1 	𝑋𝑁

Recap:	The	need	for	depth

• Deep	Boolean	MLPs	that	scale	linearly	with	the	
number	of	inputs	…	

• …	can	become	exponentially	large	if	recast	
using	only	one	layer	

• It	gets	worse..

The	need	for	depth

• The	wide	function	can	happen	at	any	layer	
• Having	a	few	extra	layers	can	greatly	reduce	network	size

X1 X2 X3 X4 X5

a b c d e f

𝑎 ⊕ 𝑏 ⊕ 𝑐 ⊕ 𝑑 ⊕ 𝑒 ⊕ 𝑓

Depth	vs	Size	in	Boolean	Circuits

• The	XOR	is	really	a	parity	problem	

• Any	Boolean	circuit	of	depth	 	using	AND,OR	and	
NOT	gates	with	unbounded	fan-in	must	have	size	

	
– Parity,	Circuits,	and	the	Polynomial-Time	Hierarchy,		M.	
Furst,	J.	B.	Saxe,	and	M.	Sipser,	Mathematical	Systems	
Theory	1984	

– Alternately	stated:	 	
• Set	of	constant-depth	polynomial	size	circuits	of	unbounded	
fan-in	elements

𝑑

2𝑛1/𝑑

𝑝𝑎𝑟𝑖𝑡𝑦 ∉ 𝐴𝐶0

128

Caveat:	Not	all	Boolean	functions..	

• Not	all	Boolean	circuits	have	such	clear	depth-vs-size	tradeoff	

• Shannon’s	theorem:	For	 ,	there	is	Boolean	function	of	 	
variables	that	requires	at	least	 	gates	
– More	correctly,	for	large	 ,almost	all	n-input	Boolean	functions	

need	more	than	 	gates	

• Note:	If	all	Boolean	functions	over	 	inputs	could	be	computed	
using	a	circuit	of	size	that	is	polynomial	in	 ,			
P	=	NP!

𝑛 > 2 𝑛
2𝑛/𝑛

𝑛
2𝑛/𝑛

𝑛
𝑛

129

Network	size:	summary

• An	MLP	is	a	universal	Boolean	function	

• But	can	represent	a	given	function	only	if	
– It	is	sufficiently	wide	
– It	is	sufficiently	deep	
– Depth	can	be	traded	off	for	(sometimes)	exponential	growth	of	the	width	

of	the	network	

• Optimal	width	and	depth	depend	on	the	number	of	variables	and	
the	complexity	of	the	Boolean	function	
– Complexity:		minimal	number	of	terms	in	DNF	formula	to	represent	it

Story	so	far

• Multi-layer	perceptrons	are	Universal	Boolean	Machines	

• Even	a	network	with	a	single	hidden	layer	is	a	universal	
Boolean	machine	
– But	a	single-layer	network	may	require	an	exponentially	large	
number	of	perceptrons	

• Deeper	networks	may	require	far	fewer	neurons	than	
shallower	networks	to	express	the	same	function	
– Could	be	exponentially	smaller

The	MLP	as	a	classifier

• MLP	as	a	function	over	real	inputs	
• MLP	as	a	function	that	finds	a	complex	“decision	
boundary”	over	a	space	of	reals

132

784	dimensions	
(MNIST)

784	dimensions

2
𝑵𝒐𝒕 𝟐

A	Perceptron	on	Reals

• A	perceptron	operates	on		
real-valued	vectors	
– This	is	a	linear	classifier 133

x1

x2 w1x1+w2x2=T

𝑦 = {1 𝑖𝑓 ∑𝑖 𝑤𝑖x𝑖 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

x1
x2

1
0

x1

x2

x3

xN

Booleans	over	the	reals

• The	network	must	fire	if	the	input	is	in	the	
coloured	area	

134

x1

x2

x1

x2
AND

5

4
4

4

4

4

3

3

3

33 x1x2

𝑁

∑
𝑖=1

y𝑖 ≥ 5?

y1 y5y2 y3 y4

More	complex	decision	boundaries

• Network	to	fire	if	the	input	is	in	the	yellow	area	
– “OR”	two	polygons	
– A	third	layer	is	required

135

x2

AND AND

OR

x1 x1 x2

Complex	decision	boundaries

• Can	compose	arbitrarily	complex	decision	
boundaries

136

Complex	decision	boundaries

• Can	compose	arbitrarily	complex	decision	
boundaries

137

AND

OR

x1 x2

Complex	decision	boundaries

• Can	compose	arbitrarily	complex	decision	boundaries	
– With	only	one	hidden	layer!	
– How?

138

AND

OR

x1 x2

	Exercise:	compose	this	with	one	hidden	layer

• How	would	you	compose	the	decision	
boundary	to	the	left	with	only	one	hidden	
layer?

139

x1 x2

x2

x1

Composing	a	Square	decision	boundary

• The	polygon	net

140

3

3

3

3

4

x1x2

4

∑
𝑖=1

y𝑖 ≥ 4?

y1 y2 y3 y4

2

2

2

2

Composing	a	pentagon

• The	polygon	net

141

5

44

4

4

4

x1x2

5

∑
𝑖=1

y𝑖 ≥ 5?

y1 y5y2 y3 y4

2

2

2

2

2

3

3 3

3

3

Composing	a	hexagon

• The	polygon	net

142

6

5
5

5
5

5

5

x1x2

𝑁

∑
𝑖=1

y𝑖 ≥ 6?

y1 y5y2 y3 y4 y6

3

3

3

3

3

3

4

4

4

44

How	about	a	heptagon

• What	are	the	sums	in	the	different	regions?	
– A	pattern	emerges	as	we	consider	N	>	6..

143

16	sides

• What	are	the	sums	in	the	different	regions?	
– A	pattern	emerges	as	we	consider	N	>	6..

144

64	sides

• What	are	the	sums	in	the	different	regions?	
– A	pattern	emerges	as	we	consider	N	>	6..

145

1000	sides

• What	are	the	sums	in	the	different	regions?	
– A	pattern	emerges	as	we	consider	N	>	6..

146

Polygon	net

• Increasing	the	number	of	sides	reduces	the	area	
outside	the	polygon	that	have	N/2	<	Sum	<	N

147

x1x2

𝑁

∑
𝑖=1

y𝑖 ≥ 𝑁 ?

y1 y5y2 y3 y4

In	the	limit

•

• For	small	radius,	it’s	a	near	perfect	cylinder	
– N	in	the	cylinder,		N/2	outside	

∑
𝑖

𝑦𝑖 = 𝑁(1 −
1
𝜋

𝑎𝑟𝑐𝑐𝑜𝑠(𝑚𝑖𝑛(1,
𝑟𝑎𝑑𝑖𝑢𝑠

𝐱 − 𝑐𝑒𝑛𝑡𝑒𝑟)))
148

x1x2

𝑁

∑
𝑖=1

y𝑖 ≥ 𝑁 ?

y1 y5y2 y3 y4

N

N/2

Composing	a	circle

• The	circle	net	
– Very	large	number	of	neurons	
– Sum	is	N	inside	the	circle,	N/2	outside	everywhere	
– Circle	can	be	of	arbitrary	diameter,	at	any	location

149

N

N/2

𝑁

∑
𝑖=1

y𝑖 ≥ 𝑁 ?

Composing	a	circle

• The	circle	net	
– Very	large	number	of	neurons	
– Sum	is	N/2	inside	the	circle,	0	outside	everywhere	
– Circle	can	be	of	arbitrary	diameter,	at	any	location

150

N/2

0

𝑵

∑
𝒊=𝟏

𝐲𝒊 −
𝑵
𝟐

> 𝟎?

1

−𝑁/2

Adding	circles

• The	“sum”	of	two	circles	sub	nets	is	exactly	N/2	
inside	either	circle,	and	0	outside

151

𝟐𝑵

∑
𝒊=𝟏

𝐲𝒊 − 𝑵 > 𝟎?

Composing	an	arbitrary	figure

• Just	fit	in	an	arbitrary	number	of	circles	
– More	accurate	approximation	with	greater	number	of	
smaller	circles	

– Can	achieve	arbitrary	precision
152

𝑲𝑵

∑
𝒊=𝟏

𝐲𝒊 −
𝑲𝑵

𝟐
> 𝟎?

𝐾 → ∞

MLP:	Universal	classifier

• MLPs	can	capture	any	classification	boundary	
• A	one-layer	MLP	can	model	any	classification	
boundary	

• MLPs	are	universal	classifiers
153

𝑲𝑵

∑
𝒊=𝟏

𝐲𝒊 −
𝑲𝑵

𝟐
> 𝟎?

𝐾 → ∞

Depth	and	the	universal	classifier

• Deeper	networks	can	require	far	fewer	neurons

x2

x1 x1 x2

Optimal	depth	in	generic	nets

• We	look	at	a	different	pattern:	
– “worst	case”	decision	boundaries	

• For	threshold-activation	networks	
– Generalizes	to	other	nets

155

Optimal	depth

• A	one-hidden-layer	neural	network	will	require	
infinite	hidden	neurons

𝑵

∑
𝒊=𝟏

𝐲𝒊 −
𝑵
𝟐

> 𝟎?

𝑁 → ∞

Optimal	depth

• Two-layer	network:	56	hidden	neurons

Optimal	depth

• Two-layer	network:	56	hidden	neurons	
– 16	neurons	in	hidden	layer	1

𝑌1𝑌2 𝑌3 𝑌16

𝑌16

𝑌1 𝑌2 𝑌3 𝑌4

𝑌5
𝑌8

𝑌9 𝑌12

𝑌13 𝑌14 𝑌15

𝑌6 𝑌7

𝑌10 𝑌11

Optimal	depth

• Two-layer	network:	56	hidden	neurons	
– 16	in	hidden	layer	1	
– 40	in	hidden	layer	2	
– 57	total	neurons,	including	output	neuron

Optimal	depth

• But	this	is	just	𝑌1 ⊕ 𝑌2 ⊕ … ⊕ 𝑌16

𝑌1𝑌2 𝑌3 𝑌16

𝑌16

𝑌1 𝑌2 𝑌3 𝑌4

𝑌5
𝑌8

𝑌9 𝑌12

𝑌13 𝑌14 𝑌15

𝑌6 𝑌7

𝑌10 𝑌11

Optimal	depth

• But	this	is	just	 	
– The	XOR	net	will	require	16	+	15x3	=	61	neurons	

• Greater	than	the	2-layer	network	with	only	52	neurons

𝑌1 ⊕ 𝑌2 ⊕ … ⊕ 𝑌16

Optimal	depth

• A	one-hidden-layer	neural	network	will	require	
infinite	hidden	neurons

𝑲𝑵

∑
𝒊=𝟏

𝐲𝒊 −
𝑲𝑵

𝟐
> 𝟎?

𝐾 → ∞

Actual	linear	units

• 64	basic	linear	feature	detectors

𝑌1𝑌2 𝑌3 𝑌64….

Optimal	depth

• Two	hidden	layers:		608	hidden	neurons	
– 64	in	layer	1	
– 544	in	layer	2		

• 609	total	neurons	(including	output	neuron)

….
….

Optimal	depth

• XOR	network	(12	hidden	layers):	253	neurons	
• The	difference	in	size	between	the	deeper	optimal	(XOR)	net	and	

shallower	nets	increases	with	increasing	pattern	complexity

….….
….….
….….

Story	so	far

• Multi-layer	perceptrons	are	Universal	Boolean	Machines	
– Even	a	network	with	a	single	hidden	layer	is	a	universal	Boolean	machine	

• Multi-layer	perceptrons	are	Universal	Classification	Functions	
– Even	a	network	with	a	single	hidden	layer	is	a	universal	classifier	

• But	a	single-layer	network	may	require	an	exponentially	large	number	
of	perceptrons	than	a	deep	one	

• Deeper	networks	may	require	exponentially	fewer	neurons	than	
shallower	networks	to	express	the	same	function	
– Could	be	exponentially	smaller	
– Deeper	networks	are	more	expressive

MLP	as	a	continuous-valued	regression

• A	simple	3-unit	MLP	with	a	“summing”	output	unit	can	generate	a	
“square	pulse”	over	an	input	
– Output	is	1	only	if	the	input	lies	between	T1	and	T2	

– T1	and	T2	can	be	arbitrarily	specified
167

+x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)

MLP	as	a	continuous-valued	regression

• A	simple	3-unit	MLP	can	generate	a	“square	pulse”	over	an	input	
• An	MLP	with	many	units	can	model	an	arbitrary	function	over	an	input	

– To	arbitrary	precision	
• Simply	make	the	individual	pulses	narrower	

• A	one-layer	MLP	can	model	an	arbitrary	function	of	a	single	input
168

x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)
x

+× h1
× h2

× h𝑛

h1

h2

h𝑛

For	higher-dimensional	functions

• An	MLP	can	compose	a	cylinder	
– N	in	the	circle,		N/2	outside

N

N/2

+

A	“true”	cylinder

• An	MLP	can	compose	a	true	(almost)	cylinder	
– N/2	in	the	circle,		0	outside	
– By	adding	a	“bias”	
– We	will	encounter	bias	terms	again	

• They	are	standard	components	of	perceptrons	

N/2

0

+

1
-N/2

+

MLP	as	a	continuous-valued	function

• MLPs	can	actually	compose	arbitrary	functions	
– Even	with	only	one	layer	

• As	sums	of	scaled	and	shifted	cylinders	

– To	arbitrary	precision	
• By	making	the	cylinders	thinner	

– The	MLP	is	a	universal	approximator!

171

× h1

× h2

× h𝑛

h1 h2

h𝑛

The	issue	of	depth

• Previous	discussion	showed	that	a	single-layer	MLP	is	a	
universal	function	approximator	
– Can	approximate	any	function	to	arbitrary	precision	
– But	may	require	infinite	neurons	in	the	layer	

• More	generally,	deeper	networks	will	require	far	fewer	
neurons	for	the	same	approximation	error	
– The	network	is	a	generic	map	

• The	same	principles	that	apply	for	Boolean	networks	apply	here	

– Can	be	exponentially	fewer	than	the	1-layer	network

172

Sufficiency	of	architecture

• A	neural	network	can	represent	any	function	provided	
it	has	sufficient	capacity	
– I.e.	sufficiently	broad	and	deep	to	represent	the	function	

• Not	all	architectures	can	represent	any	function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

…..

173

Sufficiency	of	architecture

• A	neural	network	can	represent	any	function	provided	
it	has	sufficient	capacity	
– I.e.	sufficiently	broad	and	deep	to	represent	the	function	

• Not	all	architectures	can	represent	any	function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
❖ With caveats..

…..

Why?

174

Sufficiency	of	architecture

• A	neural	network	can	represent	any	function	provided	
it	has	sufficient	capacity	
– I.e.	sufficiently	broad	and	deep	to	represent	the	function	

• Not	all	architectures	can	represent	any	function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
❖ With caveats..

…..

175

Sufficiency	of	architecture

• A	neural	network	can	represent	any	function	provided	
it	has	sufficient	capacity	
– I.e.	sufficiently	broad	and	deep	to	represent	the	function	

• Not	all	architectures	can	represent	any	function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
❖ With caveats..

…..

176

Why?

Sufficiency	of	architecture

• A	neural	network	can	represent	any	function	provided	
it	has	sufficient	capacity	
– I.e.	sufficiently	broad	and	deep	to	represent	the	function	

• Not	all	architectures	can	represent	any	function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
❖ With caveats..

…..

177

Sufficiency	of	architecture

• A	neural	network	can	represent	any	function	provided	
it	has	sufficient	capacity	
– I.e.	sufficiently	broad	and	deep	to	represent	the	function	

• Not	all	architectures	can	represent	any	function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 neurons in the first
layer cannot represent
this pattern exactly
❖ With caveats..

…..

A 2-layer network with 16
neurons in the first layer
cannot represent the
pattern with less than 41
neurons in the second layer

178

Sufficiency	of	architecture
A network with 16 or more
threshold neurons in the first
layer is capable of representing
the figure to the right perfectly

A network with less than
16 neurons in the first
layer cannot represent
this pattern exactly
❖ With caveats..

…..

Why?

179

Sufficiency	of	architecture
This	effect	is	because	we	
use	the	threshold	activation

It	gates	information	in	
the	input	from	later	layers

The	pattern	of	outputs	within	
any	colored	region	is	identical	

Subsequent	layers	do	not	obtain	enough	
information	to	partition	them

180

Sufficiency	of	architecture
This	effect	is	because	we	
use	the	threshold	activation

It	gates	information	in	
the	input	from	later	layers

Continuous	activation	functions	result	in	graded	output	at	the	layer	

The	gradation	provides	information	to	subsequent	layers,	to	capture	
information	“missed”	by	the	lower	layer	(i.e.	it	“passes”	information	
to	subsequent	layers).

181

Sufficiency	of	architecture
This	effect	is	because	we	
use	the	threshold	activation

It	gates	information	in	
the	input	from	later	layers

Continuous	activation	functions	result	in	graded	output	at	the	layer	

The	gradation	provides	information	to	subsequent	layers,	to	capture	
information	“missed”	by	the	lower	layer	(i.e.	it	“passes”	information	
to	subsequent	layers).	

Activations	with	more	gradation	(e.g.	RELU)	pass	more	information

182

Width	vs.	Activations	vs.	Depth

• Narrow	layers	can	still	pass	information	to	
subsequent	layers	if	the	activation	function	is	
sufficiently	graded	

• But	will	require	greater	depth,	to	permit	later	
layers	to	capture	patterns

183

Lessons

• MLPs	are	universal	Boolean	function	
• MLPs	are	universal	classifiers	
• MLPs	are	universal	function	approximators	

• A	single-layer	MLP	can	approximate	anything	to	arbitrary	precision	
– But	could	be	exponentially	or	even	infinitely	wide	in	its	inputs	size	

• Deeper	MLPs	can	achieve	the	same	precision	with	far	fewer	neurons	
– Deeper	networks	are	more	expressive

Learning	the	network

• The	neural	network	can	approximate	any	function	
• But	only	if	the	function	is	known	a	priori

185

Learning	the	network

• In	reality,	we	will	only	get	a	few	snapshots	of	the	function	
to	learn	it	from	

• We	must	learn	the	entire	function	from	these	“training”	
snapshots

General	approach	to	training

• Define	an	error	between	the	actual	network	output	for	
any	parameter	value	and	the	desired	output	
– E.g.	error	defined	as	the	sum	of	the	squared	error	over	individual	
training	instances

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

𝐸 = ∑
𝑖

(𝑦𝑖 − 𝑓(𝐱𝑖, 𝐖))2

General	approach	to	training

• Problem:		Network	may	just	learn	the	values	at	the	inputs	
– Learn	the	red	curve	instead	of	the	dotted	blue	one	

• Given	only	the	red	vertical	bars	as	inputs	

– Need	“smoothness”	constraints

Data	under-specification	in	learning

• Consider	a	binary	100-dimensional	input	
• There	are	2100=1030	possible	inputs	
• Complete	specification	of	the	function	will	require	specification	of	1030	output	values	
• A	training	set	with	only		1015	training	instances	will	be	off	by	a	factor	of	1015	

– Essentially	equal	to	seeing	no	data	at	all…

189

Data	under-specification	in	learning

• Consider	a	binary	100-dimensional	input	
• There	are	2100=1030	possible	inputs	
• Complete	specification	of	the	function	will	require	specification	of	1030	output	values	
• A	training	set	with	only		1015	training	instances	will	be	off	by	a	factor	of	1015

190

Find the function!

Data	under-specification	in	learning
• MLPs	naturally	impose	constraints	

• MLPs	are	universal	approximators	
– Arbitrarily	increasing	size	can	give		
you	arbitrarily	wiggly	functions	

– The	function	will	remain	ill-defined		
on	the	majority	of	the	space	

• For	a	given	number	of	parameters	deeper	networks	
impose	more	smoothness	than	shallow	ones	
– Each	layer	works	on	the	already	smooth	surface	output	by	the	
previous	layer

191

Smoothness	through	network	structure

• Smoothness	constraints	can	also	be	imposed	through	the	network	structure	

• For	a	given	number	of	parameters	deeper	networks	impose	more	
smoothness	than	shallow	ones	
– Each	layer	works	on	the	already	smooth	surface	output	by	the	previous	layer

192

• Typical	results	(varies	with	initialization)	
• 1000	training	points		

– Many	orders	of	magnitude	more	than	you	usually	get	

• All	the	training	tricks	known	to	mankind
193

Even	when	we	get	it	all	right

But	depth	and	training	data	help

• Deeper	networks	seem	to	learn	better,	for	the	same	
number	of	total	neurons	
– Implicit	smoothness	constraints	

• As	opposed	to	explicit	constraints	from	more	conventional	
classification	models	

• Similar	functions	not	learnable	using	more	usual	
pattern-recognition	models!! 194

6	layers 11	layers

3	layers 4	layers

6	layers 11	layers

3	layers 4	layers

10000 training instances

Part	3:	What	does	the	network	
learn?

Learning	in	the	net

• Problem:	Given	a	collection	of	input-output	
pairs,	learn	the	function

Learning	for	classification

• When	the	net	must	learn	to	classify..	
– Learn	the	classification	boundaries	that	separate	
the	training	instances

x2

x1

Learning	for	classification

• In	reality	
– In	general,	not	really	cleanly	separated	
• So,	what	is	the	function	we	learn?

x2

A	trivial	MLP:	a	single	perceptron

• Learn	this	function	
– A	step	function	across	a	hyperplane

199

x1
x2

x1

x2 1
0

• Learn	this	function	
– A	step	function	across	a	hyperplane	
– Given	only	samples	form	it

200

x1
x2

x1

x2

The	simplest	MLP:	a	single	perceptron

Learning	the	perceptron

• Given	a	number	of	input	output	pairs,	learn	the	weights	and	bias	

–

– Learn	 ,	given	several	(X,	y)	pairs

𝑦 = {1 𝑖𝑓 ∑𝑁
𝑖=1 𝑤𝑖𝑋𝑖 − 𝑏 ≥ 0

0 𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
𝑊 = [𝑤1 . . 𝑤𝑁] and 𝑏

201

+.

x1

x2

x3

x𝑁 𝑏

𝑧 𝑦

𝑤1
𝑤2

𝑤3

𝑤𝑁x1

x2

Restating	the	perceptron

• Restating	the	perceptron	equation	by	adding	another	dimension	to	 	

where		

𝑋

𝑦 = {1 𝑖𝑓 ∑𝑁+1
𝑖=1 𝑤𝑖𝑋𝑖 ≥ 0

0 𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
𝑋𝑁+1 = 1

x1

x2

x3

xN
WN+1xN+1=1

202

The	Perceptron	Problem

• Find	the	hyperplane	 	that	perfectly	separates	the	two	groups	of	

points	
• In	vector	terms,		find	the	weights	vector	 	s.t.	the	plane	specified	by	

perfectly	separates	the	classes

𝑁+1

∑
𝑖=1

𝑤𝑖𝑋𝑖 = 0

𝑾
𝑾 𝑻 𝑿 = 𝟎 203

The	Perceptron	Problem

• Find	the	hyperplane	 	that	perfectly	separates	the	two	groups	of	

points	
• In	vector	terms,		find	the	weights	vector	 	s.t.	the	plane	specified	by	

perfectly	separates	the	classes

𝑁+1

∑
𝑖=1

𝑤𝑖𝑋𝑖 = 0

𝑾
𝑾 𝑻 𝑿 = 𝟎 204

𝑾

Decision Rule:
Class = sign(WTX)

A	simple	principle

• The	ideal	weight	vector	for	a	single	positive	instance	points	directly	
at	the	instance	
– Results	in	the	maximum	“margin”	

• The	ideal	weight	for	a	negative	instance	points	directly	away	from	it

A	simple	principle

• The	ideal	weight	vector	for	a	single	positive	instance	points	directly	
at	the	instance	
– Results	in	the	maximum	“margin”	

• The	ideal	weight	for	a	negative	instance	points	directly	away	from	it

A	simple	learner:	Perceptron	Algorithm

• Given	 	training	instances	 	

– 	or	 	(instances	are	either	positive	or	negative)

• Cycle	through	the	training	instances	
• Only	update	 	on	misclassified	instances	
• If	instance	misclassified:	

– If	instance	is	positive	class	

– If	instance	is	negative	class		

𝑁 (𝑋1, 𝑌1), (𝑋2, 𝑌2), …, (𝑋𝑁, 𝑌𝑁)
𝑌𝑖 = + 1 −1

𝑊

𝑊 = 𝑊 + 𝑋𝑖

𝑊 = 𝑊 − 𝑋𝑖

207

The	Perceptron	Algorithm

• Initialize:	Randomly	initialize	the	hyperplane	
– I.e.	randomly	initialize	the	normal	vector	 	

– Classification	rule	 	
– The	random	initial	plane	will	make	mistakes

𝑊
𝑠𝑖𝑔𝑛(𝑊 𝑇 𝑋)

208

𝑊

-1(Red)

+1	(blue)

Perceptron	Algorithm

209

𝑊

-1(Red)

Initialization

+1	(blue)

Perceptron	Algorithm

210

𝑊

-1(Red)

Misclassified positive instance

+1	(blue)

Perceptron	Algorithm

211

𝑊

-1(Red)

+1	(blue)

𝑛𝑒𝑤 𝑊

Perceptron	Algorithm

212

Updated	weight	vector

𝑜𝑙𝑑 𝑊

Misclassified	positive	instance,		add	it	to	W

Perceptron	Algorithm

213

𝑊

-1(Red)

Updated	hyperplane

+1	(blue)

Perceptron	Algorithm

214

𝑊

-1(Red)

Misclassified instance, negative class

+1	(blue)

Perceptron	Algorithm

215

𝑊

-1(Red)+1	(blue)

Perceptron	Algorithm

216

𝑊𝑜𝑙𝑑

-1(Red)

Misclassified	negative	instance,		subtract	it	from	W

𝑊

+1	(blue)

Perceptron	Algorithm

217

𝑊𝑜𝑙𝑑

-1(Red)

𝑊

Updated	hyperplane

+1	(blue)

Perceptron	Algorithm

218

-1(Red)

𝑊

Perfect	classification,	no	more	updates

+1	(blue)

Convergence	of	Perceptron	Algorithm

• Guaranteed	to	converge	if	classes	are	linearly	
separable	

– After	no	more	than	 	misclassifications	

• Specifically,	when	W	is	initialized	to	0	

– 	is	length	of	longest	training	point
– 	is	the	best-case	closest	distance	of	a	training	point	
from	the	classifier
• Same	as	the	margin	in	an	SVM	

– Intuitively	–	takes	many	increments	of	size	 	to	undo	
an	error	resulting	from	a	step	of	size	

(𝑅
𝛾)

2

𝑅
𝛾

𝛾
𝑅

219

In	reality:	Trivial	linear	example

• Two-dimensional	example	
– Blue	dots	(on	the	floor)	on	the	“red”	side	
– Red	dots	(suspended	at	Y=1)	on	the	“blue”	side	
– No	line	will	cleanly	separate	the	two	colors

220

231

x1
x2

Non-linearly	separable	data:	1-D	example

• One-dimensional	example	for	visualization	
– All	(red)	dots	at	Y=1	represent	instances	of	class	Y=1	
– All	(blue)	dots	at	Y=0	are	from	class	Y=0	
– The	data	are	not	linearly	separable	

• In	this	1-D	example,	a	linear	separator	is	a	threshold	
• No	threshold	will	cleanly	separate	red	and	blue	dots

221

x

y

Undesired	Function

• One-dimensional	example	for	visualization	
– All	(red)	dots	at	Y=1	represent	instances	of	class	Y=1	
– All	(blue)	dots	at	Y=0	are	from	class	Y=0	
– The	data	are	not	linearly	separable	

• In	this	1-D	example,	a	linear	separator	is	a	threshold	
• No	threshold	will	cleanly	separate	red	and	blue	dots

222

x

y

What	if?

• One-dimensional	example	for	visualization	
– All	(red)	dots	at	Y=1	represent	instances	of	class	Y=1	
– All	(blue)	dots	at	Y=0	are	from	class	Y=0	
– The	data	are	not	linearly	separable	

• In	this	1-D	example,	a	linear	separator	is	a	threshold	
• No	threshold	will	cleanly	separate	red	and	blue	dots

223

x

y

What	if?

• What	must	the	value	of	the	function	be	at	this	
X?	
– 1		because	red	dominates?	

– 0.9	:		The	average?
224

x

y

10	instances

90	instances

What	if?

• What	must	the	value	of	the	function	be	at	this	
X?	
– 1		because	red	dominates?	

– 0.9	:		The	average?
225

x

y

10	instances

90	instances

Estimate:	 ≈ 𝑃(1 |𝑋)
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

What	if?

• What	must	the	value	of	the	function	be	at	this	
X?	
– 1		because	red	dominates?	

– 0.9	:		The	average?
226

x

y

10	instances

90	instances

Estimate:	 ≈ 𝑃(1 |𝑋)
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

Should an infinitesimal nudge
of the red dot change the function
estimate entirely?

If not, how do we estimate ?	
(since	the	positions	of	the	red	and	blue	X	
Values	are	different)

𝑃 (1 |𝑋)

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	Y=1	at	that	point

227

x

y

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

228

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

229

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

230

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

231

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

232

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

233

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

234

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

235

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

236

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

237

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

238

x

y

The	probability	of	y=1

• Consider	this	differently:	at	each	point	look	at	a	small	window	
around	that	point	

• Plot	the	average	value	within	the	window	
– This	is	an	approximation	of	the	probability	of	1	at	that	point

239

x

y

The	probability	of	y=1

The	logistic	regression	model

240

y=0

y=1

x

• Class	1	becomes	increasingly	probable	going	left	to	right	
– Very	typical	in	many	problems

The	logistic	perceptron

• A	sigmoid	perceptron	with	a	single	input	models	
the	a	posteriori	probability	of	the	class	given	the	
input

𝑦

𝑥

𝑤1

𝑤0

Non-linearly	separable	data

• Two-dimensional	example	
– Blue	dots	(on	the	floor)	on	the	“red”	side	
– Red	dots	(suspended	at	Y=1)	on	the	“blue”	side	
– No	line	will	cleanly	separate	the	two	colors

242

253

x1
x2

Logistic	regression

• This	the	perceptron	with	a	sigmoid	activation	
– It	actually	computes	the	probability	that	the	input	belongs	to	class	1	
– Decision	boundaries	may	be	obtained	by	comparing	the	probability	to	a	threshold	

• These	boundaries	will	be	lines	(hyperplanes	in	higher	dimensions)	
• The	sigmoid	perceptron	is	a	linear	classifier

243

When X is a 2-D variable x1

x2

Decision: y > 0.5?𝑃 (𝑌 = 1 𝑋) =
1

1 + exp(−(∑𝑖 𝑤𝑖𝑥𝑖 + 𝑤0)) 𝑦

𝑤2

𝑤0

𝑤1

𝑥1 𝑥2

Estimating	the	model

• Given	the	training	data	(many	 	pairs	
represented	by	the	dots),	estimate	 	and	 	
for	the	curve

(𝑥, 𝑦)
𝑤0 𝑤1

244

x

y

Estimating	the	model

245

x

y

• Easier	to	represent	using	a	y	=	+1/-1	notation

Estimating	the	model

• Given:	Training	data	

• s	are	vectors,	 s	are	binary	(0/1)	class	values
• Total	probability	of	data	

(𝑋1, 𝑦1), (𝑋2, 𝑦2), …, (𝑋𝑁, 𝑦𝑁)
𝑋 𝑦

𝑃((𝑋1, 𝑦1), (𝑋2, 𝑦2), …, (𝑋𝑁, 𝑦𝑁)) = ∏
𝑖

𝑃(𝑋𝑖, 𝑦𝑖)

= ∏
𝑖

𝑃(𝑦𝑖 |𝑋𝑖)𝑃(𝑋𝑖) = ∏
𝑖

1
1 + 𝑒−𝑦𝑖(𝑤0+𝑤𝑇 𝑋𝑖)

𝑃(𝑋𝑖)

246

Estimating	the	model

• Likelihood	

• Log	likelihood	

𝑃(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) = ∏
𝑖

1
1 + 𝑒−𝑦𝑖(𝑤0+𝑤𝑇𝑋𝑖)

𝑃(𝑋𝑖)

log𝑃(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) =

∑
𝑖

log𝑃(𝑋𝑖)− ∑
𝑖

log(1 + 𝑒−𝑦𝑖(𝑤0+𝑤𝑇𝑋𝑖))

247

Maximum	Likelihood	Estimate

• Equals	(note	argmin	rather	than	argmax)	

• Identical	to	minimizing	the	cross	entropy	between	
the	desired	output and	actual	output	

	

• Cannot	be	solved	directly,	needs	gradient	descent

�̂�0, �̂�1 = argmax
𝑤0,𝑤1

log𝑃(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎)

�̂�0, �̂�1 = argmin
𝑤0,𝑤

∑
𝑖

log(1 + 𝑒−𝑦𝑖(𝑤0+𝑤𝑇𝑋𝑖))
 𝑦

1
1 + 𝑒− (𝑤0+𝑤𝑇𝑋𝑖)

248

So	what	about	this	one?

• Non-linear	classifiers..

x2

First	consider	the	separable	case..

• When	the	net	must	learn	to	classify..

x2

x1

First	consider	the	separable	case..

• For	a	“sufficient”	net

x2

x1
x1 x2

First	consider	the	separable	case..

• For	a	“sufficient”	net	
• This	final	perceptron	is	a	linear	classifier

x2

x1
x1 x2

First	consider	the	separable	case..

• For	a	“sufficient”	net	
• This	final	perceptron	is	a	linear	classifier	over	
the	output	of	the	penultimate	layer

x2

x1
x1 x2

???

𝑦1 𝑦2

First	consider	the	separable	case..

• For	perfect	classification	the	
output	of	the	penultimate	layer	must	be	
linearly	separable

x1 x2

y2

y1

𝑦1 𝑦2

First	consider	the	separable	case..

• The	rest	of	the	network	may	be	viewed	as	a	transformation	that	transforms	
data	from	non-linear	classes	to	linearly	separable	features	
– We	can	now	attach	any	linear	classifier	above	it	for	perfect	classification	
– Need	not	be	a	perceptron	
– In	fact,	slapping	on	an	SVM	on	top	of	the	features	may	be	more	generalizable!

x1 x2

y2

y1

First	consider	the	separable	case..

• The	rest	of	the	network	may	be	viewed	as	a	transformation	that	transforms	data		
from	non-linear	classes	to	linearly	separable	features	
– We	can	now	attach	any	linear	classifier	above	it	for	perfect	classification	
– Need	not	be	a	perceptron	
– E.g.	a	max-margin	classifier

x1 x2

y2

y1

𝑦1 𝑦2

First	consider	the	separable	case..

• This	is	true	of	any	sufficient	structure	
– Not	just	the	optimal	one	

• For	insufficient	structures,	the	network	may	attempt	to	transform	the	inputs	to	linearly	
separable	features	
– Will	fail	to	separate	
– The	learning	algorithm	will	try	to	learn	the	most	separating	(or	least	error)	boundaries

x1 x2

𝑦1 𝑦2

y2

y1

Mathematically..

•

• The	data	are	(almost)	linearly	separable	in	the	space	of	 	
• The	network	until	the	second-to-last	layer	is	a	non-linear	function	

	that	converts	the	input	space	of	 into	the	feature	space	
where	the	classes	are	maximally	linearly	separable

𝑦𝑜𝑢𝑡 =
1

1 + exp(𝑏 + 𝑊 𝑇𝑌)
=

1
1 + exp(𝑏 + 𝑊 𝑇𝑓(𝑋))

𝑌

𝑓(𝑋) 𝑋 𝑌

x1 x2

𝑦1 𝑦2

𝑦𝑜𝑢𝑡

𝑓(𝑋)

When	the	data	are	not	separable	and	
boundaries	are	not	linear..

• More	typical	setting	for	classification	problems

x2

x1

Inseparable	classes	with	an	output	logistic	
perceptron

• The	“feature	extraction”	layer	transforms	the	data	
such	that	the	posterior	probability	may	now	be	
modelled	by	a	logistic

x1 x2

y2

y1

𝑦1 𝑦2

Inseparable	classes	with	an	output	logistic	
perceptron

• The	“feature	extraction”	layer	transforms	the	data	such	that	the	
posterior	probability	may	now	be	modelled	by	a	logistic	
– The	output	logistic	computes	the	posterior	probability	of	the	class	

given	the	input

261

x1
x2

x

y

When	the	data	are	not	separable	and	
boundaries	are	not	linear..

• The	output	of	the	network	is	 	
– For	multi-class	networks,	it	will	be	the	vector	of	a	posteriori	class	

probabilities		

• Network	training	optimizes	parameters	to	maximize	

𝑃 (𝑦 |𝑥)

𝑷 (𝒚 |𝒙)

x2

x1 x2

Story	so	far

• A	classification	MLP	actually	comprises	two	
components	
– A	“feature	extraction	network”	that	converts	the	inputs	into	
linearly	separable	features	
• Or	nearly	linearly	separable	features	

– A	final	linear	classifier	that	operates	on	the	linearly	separable	
features	

• Training	the	MLP	is	actually	a	statistical	exercise	
– Finds	the	parameters	that	maximize	the	conditional	
probability	of	the	label,	given	the	input!!

How	about	the	lower	layers?

• How	do	the	lower	layers	respond?	
– They	too	compute	features	
– But	how	do	they	look	

• Manifold	hypothesis:	For	separable	classes,	the	classes	are	linearly	separable	on	a	non-
linear	manifold	

• Layers	sequentially	“straighten”	the	data	manifold	
– Until	the	final	layer,	which	fully	linearizes	it

x1 x2

𝑦1 𝑦2

The	behavior	of	the	layers

• Synthetic	example:	Feature	space

The	behavior	of	the	layers

• Synthetic	example:	Feature	space

The	behavior	of	the	layers

• Synthetic	example:	Feature	space

The	behavior	of	the	layers

• CIFAR

The	behavior	of	the	layers

• CIFAR

The	behavior	of	the	layers

• CIFAR

The	behavior	of	the	layers

• CIFAR

The	behavior	of	the	layers

• CIFAR

The	behavior	of	the	layers

• CIFAR

Changing	gears..

x1 x2

We’ve	seen	what	the	network	learns	here

But	what	about	here?

Intermediate	layers

Recall:	The	basic	perceptron

• What	do	the	weights	tell	us?	
– The	neuron	fires	if	the	inner	product	between	the	
weights	and	the	inputs	exceeds	a	threshold

270

x1
x2
x3

xN

𝑦 = {1 𝑖𝑓 ∑𝑖 𝑤𝑖x𝑖 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

𝑦 = {1 𝑖𝑓 𝐱𝑇 𝐰 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

Recall:	The	weight	as	a	“template”

• The	perceptron	fires	if	the	input	is	within	a	specified	angle	of	the	weight	
– Represents	a	convex	region	on	the	surface	of	the	sphere!	
– The	network	is	a	Boolean	function	over	these	regions.	

• The	overall	decision	region	can	be	arbitrarily	nonconvex	

• Neuron	fires	if	the	input		vector	is	close	enough	to	the	weight	vector.	
– If	the	input	pattern	matches	the	weight	pattern	closely	enough

271

w

𝑿𝑻𝑾 > 𝑻
𝐜𝐨𝐬𝜽 >

𝑻
𝑿

𝜽 < 𝒄𝒐𝒔−𝟏
𝑻
𝑿

x1
x2
x3

xN

Recall:	The	weight	as	a	template

• If	the	correlation	between	the	weight	pattern	
and	the	inputs	exceeds	a	threshold,	fire	

• The	perceptron	is	a	correlation	filter!	
272

W X X

Correlation	=	0.57 Correlation	=	0.82𝑦 = {1 𝑖𝑓 ∑𝑖 𝑤𝑖x𝑖 ≥ 𝑇
0 𝑒𝑙𝑠𝑒

Recall:	MLP	features

• The	lowest	layers	of	a	network	detect	significant	features	in	the	
signal	

• The	signal	could	be	(partially)	reconstructed	using	these	features	
– Will	retain	all	the	significant	components	of	the	signal 273

DIGIT	OR	NOT?

Making	it	explicit

• The	signal	could	be	(partially)	reconstructed	using	these	features	
– Will	retain	all	the	significant	components	of	the	signal	

• Simply	recompose	the	detected	features	
– Will	this	work?

274

𝑿

𝒀

�̂�

𝑾

𝑾 𝑻

Making	it	explicit

• The	signal	could	be	(partially)	reconstructed	using	these	features	
– Will	retain	all	the	significant	components	of	the	signal	

• Simply	recompose	the	detected	features	
– Will	this	work?

275

𝑿

𝒀

�̂�

𝑾

𝑾 𝑻

Not in this problem.

The network is optimized to recognize digits

Will only retain distinctly digit-like or obviously not-digit like features

Rest are irrelevant and will be lost

Making	it	explicit:	an	autoencoder

• A	neural	network	can	be	trained	to	predict	the	input	itself	
• This	is	an	autoencoder	
• An	encoder	learns	to	detect	all	the	most	significant	patterns	in	the	signals	
• A	decoder	recomposes	the	signal	from	the	patterns 276

𝑿

𝒀

�̂�

𝑾

𝑾 𝑻

The	Simplest	Autencoder

• A	single	hidden	unit	
• Hidden	unit	has	linear	activation	
• What	will	this	learn? 277

𝑿

�̂�

𝑾

𝑾 𝑻

The	Simplest	Autencoder

• This	is	just	PCA!

278

𝐱

�̂�

𝒘

𝒘𝑻

Training:	Learning	 	by	minimizing	
L2	divergence

𝑊

x̂ = 𝑤𝑇𝑤x

𝑑𝑖𝑣(x̂, x) = x − x̂
2

= x − w𝑇𝑤x
2

�̂� = argmin
𝑊

𝐸[x − w𝑇𝑤x
2]

�̂� = argmin
𝑊

𝐸[𝑑𝑖𝑣(x̂, x)]

The	Simplest	Autencoder

• The	autoencoder	finds	the	direction	of	maximum	
energy	
– Variance	if	the	input	is	a	zero-mean	RV	

• All	input	vectors	are	mapped	onto	a	point	on	the	
principal	axis 279

𝐱

�̂�

𝒘

𝒘𝑻

The	Simplest	Autencoder

• Simply	varying	the	hidden	representation	will	
result	in	an	output	that	lies	along	the	major	
axis

280

�̂�

𝒘𝑻

𝒛

The	Simplest	Autencoder

281

𝐱

�̂�

𝒘

𝒖𝑻

• Simply	varying	the	hidden	representation	will	result	in	
an	output	that	lies	along	the	major	axis	

• This	will	happen	even	if	the	learned	output	weight	is	
separate	from	the	input	weight	
– The	minimum-error	direction	is	the	principal	eigen	vector

For	more	detailed	AEs	without	a	non-
linearity

• This	is	still	just	PCA	
– The	output	of	the	hidden	layer	will	be	in	the	principal	subspace	

• Even	if	the	re-composition	weights	are	different	from	the	“analysis”	
weights 282

𝑿

�̂�

𝒀
𝑾

𝑾 𝑻

𝐘 = 𝐖𝐗 �̂� = 𝐖𝑇 𝐘 𝐸 = 𝐗 − 𝐖𝑇 𝐖𝐗
2

Find W to minimize Avg[E]

Terminology

• Terminology:		
– Encoder:	The	“Analysis”	net	which	computes	the	hidden	

representation	
– Decoder:	The	“Synthesis”	which	recomposes	the	data	from	the	

hidden	representation	
283

𝑿

�̂�

𝒀
𝑾

𝑾 𝑻

ENCODER

DECODER

Introducing	nonlinearity

• When	the	hidden	layer	has	a	linear	activation	the	decoder	represents	the	best	linear	manifold	to	fit	
the	data	
– Varying	the	hidden	value	will	move	along	this	linear	manifold	

• When	the	hidden	layer	has	non-linear	activation,	the	net	performs	nonlinear	PCA	
– The	decoder	represents	the	best	non-linear	manifold	to	fit	the	data	
– Varying	the	hidden	value	will	move	along	this	non-linear	manifold

284

𝑿

�̂�

𝒀
𝑾

𝑾 𝑻

ENCODER

DECODER

The	AE

• With	non-linearity	
– “Non	linear”	PCA	
– Deeper	networks	can	capture	more	complicated	manifolds	

• “Deep”	autoencoders
285

ENCODER

DECODER

Some	examples

• 2-D	input	
• Encoder	and	decoder	have	2	hidden	layers	of	100	neurons,	but	

hidden	representation	is	unidimensional	
• Extending	the	hidden	“z”	value	beyond	the	values	seen	in	training	

does	not	continue	along	a	helix

Encoder	is	an	MLP	with	5	residual	blocks,	each	with	64	hidden	units.		
Two	fully-connected	layers	(2x64,	64,	1).		
Decoder	is	the	mirror	image.		
All	non-linearities	are	exponential	linear	units	(ELU)

Some	examples

• The	model	is	specific	to	the	training	data..	
– Varying	the	hidden	layer	value	only	generates	data	along	the	

learned	manifold	
• Any	input	will	result	in	an	output	along	the	learned	manifold	

– But	may	not	generalize	beyond	the	manifold

The	AE

• When	the	hidden	representation	is	of	lower	dimensionality	
than	the	input,	often	called	a	“bottleneck”	network	
– Nonlinear	PCA	
– Learns	the	manifold	for	the	data	

• If	properly	trained
288

ENCODER

DECODER

The	AE

• The	decoder	can	only	generate	data	on	the	
manifold	that	the	training	data	lie	on	

• This	also	makes	it	an	excellent	“generator”	of	the	
distribution	of	the	training	data	
– Any	values	applied	to	the	(hidden)	input	to	the	decoder	
will	produce	data	similar	to	the	training	data

289

DECODER

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

290

DECODER

DECODER

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

291

Sax	dictionary

DECODER

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

291

Sax	dictionary

DECODER

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

291

Sax	dictionary

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

292

DECODER

Clarinet	dictionary

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

292

DECODER

Clarinet	dictionary

The	Decoder:

• The	decoder	represents	a	source-specific	generative	
dictionary	

• Exciting	it	will	produce	typical	data	from	the	source!	

292

DECODER

Clarinet	dictionary

A	cute	application..

• Signal	separation…	

• Given	a	mixed	sound	from	multiple	sources,	
separate	out	the	sources

Dictionary-based	techniques

• Basic	idea:		Learn	a	dictionary	of	“building	blocks”	for	
each	sound	source	

• All	signals	by	the	source	are	composed	from	entries	
from	the	dictionary	for	the	source

294

Compose

Dictionary-based	techniques

• Learn	a	similar	dictionary	for	all	sources	
expected	in	the	signal

295

Compose

Dictionary-based	techniques

• A	mixed	signal	is	the	linear	combination	of	signals	
from	the	individual	sources	
– Which	are	in	turn	composed	of	entries	from	its	
dictionary	

296

Compose

Guitar	
music

Drum	
music

Compose

+

Dictionary-based	techniques

• Separation:	Identify	the	combination	of	
entries	from	both	dictionaries	that	compose	
the	mixed	signal

297

+

Dictionary-based	techniques

• Separation:	Identify	the	combination	of	entries	from	
both	dictionaries	that	compose	the	mixed	signal	
• The	composition	from	the	identified	dictionary	entries	gives	you	the	

separated	signals

298

+
Compose

Guitar	
music

Drum	
music

Compose

Learning	Dictionaries

• Autoencoder	dictionaries	for	each	source	
– Operating	on	(magnitude)	spectrograms	

• For	a	well-trained	network,	the	“decoder”	dictionary	is	
highly	specialized	to	creating	sounds	for	that	source

𝐷1(0,𝑡) 𝐷1(𝐹, 𝑡)…
…

𝐷2(0,𝑡) 𝐷2(𝐹, 𝑡)…
…

…

𝐷1(0,𝑡) �̂�1(𝐹, 𝑡) �̂�2(0,𝑡) �̂�2(𝐹, 𝑡)… …

𝑓DE1()

𝑓EN1()

𝑓DE2()

𝑓EN2()

299

Model	for	mixed	signal

• The	sum	of	the	outputs	of	both	neural	
dictionaries	
– For	some	unknown	input

𝑓DE1() 𝑓DE2()

𝑌 (0,𝑡) Y(𝐹, 𝑡)…𝑌 (1,𝑡)

… …

𝐼1(0,𝑡) … 𝐼1(𝐻, 𝑡)
… …

𝐼2(0,𝑡) … 𝐼2(𝐻, 𝑡)

Estimate	 	and	 	to	minimize	cost	function	𝐼1() 𝐼2() 𝐽()

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 = ∑ 𝑋(𝑓, 𝑡) − 𝑌(𝑓, 𝑡)
2

𝛼 𝛽𝛽
𝛽

𝛼
𝛼

300

Separation

• Given	mixed	signal	and	source	dictionaries,	find	
excitation	that	best	recreates	mixed	signal	
– Simple	backpropagation	

• Intermediate	results	are	separated	signals

Test	Process

𝑓DE1() 𝑓DE2()

𝑌 (0,𝑡) Y(𝐹, 𝑡)…𝑌 (1,𝑡)

… …

𝐼1(0,𝑡) … 𝐼1(𝐻, 𝑡)
… …

𝐼2(0,𝑡) … 𝐼2(𝐻, 𝑡) 	:	Hidden	layer	size𝐻

Estimate	 	and	 	to	minimize	cost	function	𝐼1() 𝐼2() 𝐽()

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 = ∑ 𝑋(𝑓, 𝑡) − 𝑌(𝑓, 𝑡)
2

𝛼 𝛽𝛽
𝛽

𝛼
𝛼

301

Example	Results

• Separating	music

302

5-layer	dictionary,	600	units	wide

Mixture Separated

Original

Separated

Original

Example	Results

• Separating	music

302

5-layer	dictionary,	600	units	wide

Mixture Separated

Original

Separated

Original

Example	Results

• Separating	music

302

5-layer	dictionary,	600	units	wide

Mixture Separated

Original

Separated

Original

Example	Results

• Separating	music

302

5-layer	dictionary,	600	units	wide

Mixture Separated

Original

Separated

Original

Example	Results

• Separating	music

302

5-layer	dictionary,	600	units	wide

Mixture Separated

Original

Separated

Original

Example	Results

• Separating	music

302

5-layer	dictionary,	600	units	wide

Mixture Separated

Original

Separated

Original

Story	for	the	day
• Classification	networks	learn	to	predict	the	a	posteriori	

probabilities	of	classes	
– The	network	until	the	final	layer	is	a	feature	extractor	that	converts	

the	input	data	to	be	(almost)	linearly	separable	
– The	final	layer	is	a	classifier/predictor	that	operates	on	linearly	

separable	data	

• Neural	networks	can	be	used	to	perform	linear	or	non-linear	
PCA	
– “Autoencoders”	
– Can	also	be	used	to	compose	constructive	dictionaries	for	data	

• Which,	in	turn	can	be	used	to	model	data	distributions

