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Why Linear Models?

• In 2023, deep neural networks are ubiquitous!

• Why a lecture on linear models?

X The underlying machine learning concepts are the same

X The theory (statistics and optimization) are much better understood

X Linear models are still widely used (very effective if data is scarce)

X Linear models are a component of deep networks.
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Linear Classifiers and Neural Networks
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Today’s Roadmap

• Linear regression

• Binary and multi-class classification

• Linear classifiers: perceptron, logistic regression, SVMs

• Softmax and sparsemax

• Regularization

• Optimization: stochastic gradient descent

• Similarity-based classifiers and kernels.
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Some Notation: Inputs and Outputs

• Input x ∈ X

X e.g., a news article, a sentence, an image, ...

• Output y ∈ Y

X e.g., spam/not spam, a topic, an image segmentation

• Input/output pair: (x , y) ∈ X× Y

X e.g., a news article together with a topic

X e.g., a sentence together with its translation

X e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

• Given a collection of input/output pairs (training data)

D = (x1, y1), ..., (xN , yN) ∈ X× Y

• ... learn a predictor h : X→ Y.

• To use it for a new input x ∈ X, predict/infer ŷ = h(x).

• Hopefully, ŷ ≈ y most of the time, i.e., h should generalize.

• Standard approach: empirical risk minimization (ERM):

h = arg min
h∈H

N∑
i=1

L
(
h(xi ), yi

)
where L is a loss function and H a model class.
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Regression vs Classification

Regression: continuous/quantitative Y;

Classification: discrete/categorical Y.

• Regression: Y = R, or Y = [0, 1], or Y = R+, or ...

X e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK , or Y = RK
+, or Y = ∆K , or ...

X e.g., denoise an image, estimate class probabilities, ...

• Binary classification: Y = {±1}
X e.g., spam detection, fraud detection, ...

• Multi-class classification: Y = {1, 2, . . . ,K} (order is irrelevant)

X e.g., topic classification, image classification, ...

• Structured classification: Y exponentially large and structured

X e.g., machine translation, caption generation, image segmentation, ...
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Reductions

• Sometimes reductions are convenient:

X logistic regression reduces classification to regression

X one-vs-all reduces multi-class to binary

X greedy search reduces structured classification to multi-class

• ... but other times it’s better to tackle the problem in its native form.

• More later!
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Feature Representations

• Feature engineering is (was?) an important step for linear models:

X Bag-of-words features for text, parts-of-speech, ...

X SIFT features and wavelet representations in computer vision

X Other categorical, Boolean, continuous features, ...

X Decades of research in machine learning, natural language processing,
computer vision, image analysis, speech processing, ...
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Feature Representations

• Feature represent information about an “object” x

• Typical approach: a feature map φ : X→ RD

• φ(x) is a (maybe high-dimensional) feature vector

• Feature vectors may mix categorical and continuous features

• Categorical features can be reduced to one-hot binary features:

ey := (0, . . . , 0, 1︸︷︷︸
position y

, 0, . . . , 0) ∈ {0, 1}K represents class y
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Feature Engineering and NLP Pipelines

• Classical NLP pipelines consist of stacking together several linear
classifiers

• Each classifier’s predictions are used to handcraft features for other
classifiers

• Examples of features:

X Word occurrences (binary feature)

X Word counts (numerical feature)

X POS tags; e.g., adjective counts for sentiment analysis

X Spell checker; e.g., misspellings counts for spam detection
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Example: Translation Quality Estimation

Goal: estimate the quality of a translation on the fly (without a reference)!
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Example: Translation Quality Estimation

Hand-crafted features:
• no of tokens in the source/target segment

• language model probability of source/target segment and their ratio

• average number of translations per source word

• ratio of brackets and punctuation symbols in source & target segments

• ratio of numbers, content/non-content words in source & target segments

• ratio of nouns/verbs/etc in the source & target segments

• % of dependency relations b/w constituents in source & target segments

• diff in depth of the syntactic trees of source & target segments

• diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

• diff in no of person/location/organization entities in source & target

• features and global score of the SMT system

• number of distinct hypotheses in the n-best list

• 1–3-gram LM probabilities using translations in the n-best to train the LM

• average size of the target phrases

• proportion of pruned search graph nodes;

• proportion of recombined graph nodes.
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Representation/Feature Engineering vs Learning

• Feature engineering (FE) is a “black art”:

X it can be very time-consuming

X it requires deep domain knowledge (e.g., linguistics in NLP)

• FE allows encoding prior knowledge, it is a form of inductive bias

• FE is still widely used in practice, specially in data-scarce scenarios

• Modern alternative: representation learning a.k.a. deep learning

Tomorrow’s lecture, by Bhiksha Raj
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Regression

• Output is a quantity, a number, thus Y ⊆ R,

• Example: given an article, how long will a user spend reading it?

X x is number of words of the article

X y is the reading time, in minutes

• How to define a model that yields a prediction ŷ from x?
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M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 16 / 107



Linear Regression

• First take: assume ŷ = wx + b

• Model parameters: w and b

• Given training data
D = {(xi , yi )}Ni=1, how to
estimate w and b?

• Least squares (LS) criterion: fit w and b on the training set by solving

(ŵLS, b̂LS) = arg min
w , b

N∑
i=1

(
yi − (w xi + b)

)2
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Linear Regression

• Often a linear dependency of ŷ on x is a poor assumption

• Second take: assume ŷ = wTφ(x), where φ(x) is a feature vector

X e.g. φ(x) = [1, x , x2, . . . , xD ] (polynomial features degree ≤ D)

X the bias b is captured by the constant feature φ0(x) = 1

• Minimize squared loss:
∑
i

(
yi −

(
wTφ(xi )

))2
= ‖Xw − y‖2

2, where

X =

 φ(x1)>

...
φ(xN)>

 , y =

 y1
...
yN


• Closed form solution: ŵLS = arg minw ‖Xw − y‖2

2 = (X>X )−1X>y

• Still called linear regression: linear w.r.t. the model parameters w.
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Linear Regression: D = 1 vs D = 2
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Overfitting and Underfitting

• We saw above an example of underfitting (D = 1).

• Choosing D = 2 “seems OK”

• However, if the model is too complex, overfitting may occur:

• Avoiding overfitting:

X regularization (later)

X some way to choose D (model complexity)
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Inductive Biases

from xkcd.com
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Least Squares: Probabilistic Interpretation

• The least squares criterion has a probabilistic interpretation.

• Assume the following probabilistic observation model:

yi = w∗Tφ(xi ) + ni

where

X ni ∼ N(0, σ2) are independent Gaussian, with σ2 fixed

X w∗ are the “true” model parameters.

• That is, P(yi |xi ;w) = 1√
2πσ2

exp
(
− (yi−w∗Tφ(xi ))2

2σ2

)
• Then, ŵLS is the maximum likelihood (ML) estimate under this model.
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One-Slide Proof

• Proof:

ŵML = arg max
w

P(y1, ..., yN |x1, ...., xN ;w)

= arg max
w

N∏
i=1

P(yi | xi ;w)

= arg max
w

N∑
i=1

logP(yi | xi ;w)

= arg max
w

N∑
i=1

−(yi −wTφ(xi ))2

2σ2
− log(

√
2πσ)︸ ︷︷ ︸

constant

= arg min
w

N∑
i=1

(yi −wTφ(xi ))2 = ŵLS

• Conclusion: LS linear regression ⇔ ML under Gaussian noise.
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Other Regression Losses

• Squared loss: L(y , ŷ) = 1
2 (y − ŷ)2.

• Absolute error loss: L(y , ŷ) = |y − ŷ |

(least absolute deviation)

• Huber loss: L(y , ŷ) =

{
1
2 (y − ŷ)2 if |y − ŷ | ≤ 1
|y − ŷ | − 1

2 if |y − ŷ | ≥ 1.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 24 / 107



Other Regression Losses

• Squared loss: L(y , ŷ) = 1
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Ridge Regression and Regularization

• Recall that LS linear regression has a closed form solution:

ŵLS = (X>X )−1X>y ,

• What if X>X is not invertible? (for example, with colinear features)

• Standard approach: ridge regression:

ŵridge = (X>X + λI )−1X>y ,

• This is equivalent to (with ‖w‖2
2 =

∑
i w

2
i , the squared `2 norm)

ŵridge = arg min
w
‖Xw − y‖2 + λ‖w‖2

2

• `2 regularization is also called weight decay, or penalized LS.
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ŵridge = arg min
w
‖Xw − y‖2 + λ‖w‖2

2

• `2 regularization is also called weight decay, or penalized LS.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 25 / 107



Ridge Regression and Regularization

• Recall that LS linear regression has a closed form solution:

ŵLS = (X>X )−1X>y ,

• What if X>X is not invertible? (for example, with colinear features)

• Standard approach: ridge regression:
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Maximum A Posteriori Regression

• Assume a prior distribution w ∼ N(0, τ2I )

• Maximum a posteriori (MAP) criterion;

ŵMAP = arg max
w

P(w|y1, ..., yN ; x1, ..., xN)

= arg max
w

P(w)P(y1, ..., yN |x1, ...xN ;w)

P(y1, ..., yN |x1, ...xN)

= arg max
w

(
logP(w) + logP(y1, ..., yN |x1, ...xN ;w)

)
= arg max

w
−‖w‖

2

2τ2
−

N∑
n=1

−(yn −wTφ(xn))2

2σ2
+ constant

= arg min
w
λ‖w‖2 +

N∑
n=1

(yn −wTφ(xn))2 (with λ = σ2/τ2)

• Conclusion: `2 regularizarion ⇔ MAP regression with Gaussian prior.
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Ridge Regression: Optimal λ

• Even if ŵLS can be computed, ŵridge may be better.

• Example: fitting an order-14 polynomial to 21 points,
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Binary Classification

• Before multi-class classification, we look at binary classification

• Output set Y = {−1,+1}

• Example: Given a news article, is it true or fake?

X x is the news article, represented a feature vector φ(x)

X y can be either true (+1) or fake (−1)

• How to define a model to predict y from x?
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Linear Classifier

• Defined by

ŷ = sign(wTφ(x) + b) =

{
+1 if wTφ(x) + b ≥ 0
−1 if wTφ(x) + b < 0.

• Intuitively, wTφ(x) + b is a “score” for the positive class

• The sign function converts from continuous to binary

• Decision boundary: wTφ(x) +b = 0 (hyperplane defined by w and b)

• Also called a hyperplane classifier
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Linear Classifier

• (w, b) define an hyperplane that splits the space into two halfs

• How to learn it from training data D = {(xi , yi )}Ni=1?
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Linear Separability

• A dataset D is linearly separable if there exists (w, b) such that
classification is perfect

Separable Not separable

• We next present an (old!) algorithm that finds such an hyperplane, if
it exists.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 32 / 107



Linear Separability

• A dataset D is linearly separable if there exists (w, b) such that
classification is perfect

Separable Not separable

• We next present an (old!) algorithm that finds such an hyperplane, if
it exists.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 32 / 107



Linear Classifier: No Bias Term

• It is common to ommit the bias term b: ŷ = sign(wTφ(x))

• In this case, the decision boundary is a hyperplane that passes
through the origin

• There is no loss of generality:

X Add a constant feature to φ(x): φ0(x) = 1

X The corresponding weight w0 is a bias term b
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

• Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during
learning were performed by
electric motors.
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Perceptron in the News...

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 36 / 107



Perceptron in the News...

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 36 / 107



Perceptron Algorithm

• Online algorithm: process one data point at each round

1 Take one xi ; apply the current model to make a prediction for it

2 If prediction is correct, do nothing

3 Else, correct w by adding/subtracting feature vector φ(xi )

• For simplicity, omit the bias b: assume a constant feature φ0(x) = 1
as explained earlier.
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Perceptron Algorithm

input: labeled data D

initialize w(0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi , yi )

predict ŷi = sign(w(k)Tφ(xi ))
if ŷi 6= yi then

update w(k+1) = w(k) + yiφ(xi )
increment k

end if
until maximum number of epochs
output: model weights w(k)
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Perceptron’s Mistake Bound

• Some definitions:

X the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

yi u
Tφ(xi ) ≥ γ, ∀i .

X radius of the data: R = maxi ‖φ(xi )‖.

• Then, the following bound of the number of mistakes holds:

Theorem (Novikoff, 1962)

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.
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One-Slide Proof

• Recall that w(k+1) = w(k) + yiφ(xi ) and that ‖u‖ = 1

• Lower bound on ‖w(k+1)‖:

uTw(k+1) = uTw(k) + yiu
Tφ(xi )

≥ uTw(k) + γ

≥ kγ.

Thus: ‖w(k+1)‖ = ‖u‖ ‖w(k+1)‖ ≥ uTw(k+1) ≥ kγ (Cauchy-Schwarz)

• Upper bound on ‖w(k+1)‖:

‖w(k+1)‖2 = ‖w(k)‖2 + ‖φ(xi )‖2 + 2

<0︷ ︸︸ ︷
yiw

(k)Tφ(xi )

≤ ‖w(k)‖2 + R2

≤ kR2.

• Equating both sides: (kγ)2 ≤ kR2 ⇒ k ≤ R2/γ2 (QED).
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What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)
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What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This result is often attributed to Minsky and Papert (1969) but was
known well before.
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Limitations of the Perceptron

• Minsky and Papert (1996) showed
limitations of multi-layer
perceptrons and fostered an “AI
winter” period.
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Multi-Class Classification

• Consider multi-class problems, with |Y| = K ≥ 2 labels (classes).

• Reduction approaches:

X One-vs-all (OVA): one binary classifier per label, with all the other
classes as negative examples. Choose the class with the highest score.

X One-vs-one (OVO): train K (K − 1)/2 pairwise classifiers and use
majority voting.

X Error correcting codes (ECoC): use a redundant binary code for each
class and train one classifier per bit.

• Here, we consider classifiers that tackle the multiple classes directly.
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Multi-Class Linear Classifiers

• Parametrized by a weight matrix W ∈ RK×D (one weight per
feature/label pair) and a bias vector b ∈ RK :

W =

 w
T
1
...
wT

K

 , b =

 b1
...
bK

 .

• Equivalently, K weight vectors wy ∈ RD and K scalars by ∈ R

• Score of each class: linear combination of features and their weights

• Predict the ŷ which maximizes the score:

ŷ = arg max
y∈Y

wy
Tφ(x) + by

= arg max(Wφ(x) + b)
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ŷ = arg max
y∈Y

wy
Tφ(x) + by

= arg max(Wφ(x) + b)

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 45 / 107



Multi-Class Linear Classifiers

• Parametrized by a weight matrix W ∈ RK×D (one weight per
feature/label pair) and a bias vector b ∈ RK :

W =

 w
T
1
...
wT

K

 , b =

 b1
...
bK

 .
• Equivalently, K weight vectors wy ∈ RD and K scalars by ∈ R

• Score of each class: linear combination of features and their weights
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Multi-Class Linear Classifier

• (W , b) split the feature space into regions delimited by hyperplanes.

• Each region in the intersection of K − 1 half-spaces.
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Commonly Used Notation in Neural Networks

Linear Classifier

Handcrafted
Features

ŷ = argmax (Wφ(x) + b) , W =


...
w>y

...

 , b =


...
by
...

 .
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Multi-Class Recovers Binary

• With two classes (e.g. Y = {+1,−1}), we recover the binary
classifier:

ŷ = arg max
y∈{±1}

wy
Tφ(x) + by

=

{
+1 if w+1

Tφ(x) + b+1 ≥ w−1
Tφ(x) + b−1

−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
w

Tφ(x) + (b+1 − b−1)︸ ︷︷ ︸
b

).

• Only half of the parameters are needed.
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Linear Classifiers (Binary vs Multi-Class)

• Prediction rule (omitting the bias term, without loss of generality):

ŷ = h(x) = arg max
y∈Y

linear in wy︷ ︸︸ ︷
wy

Tφ(x)

• The decision boundary is defined by the intersection of half spaces

• In the binary case (|Y| = 2) this corresponds to a hyperplane classifier
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Perceptron Algorithm: Multi-Class

input: labeled data D

initialize W (0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi , yi )

predict ŷi = arg maxy∈Yw
(k)
y

T
φ(xi )

if ŷi 6= yi then

update w
(k+1)
yi = w

(k)
yi + φ(xi ) {increase weight of gold class}

updatew
(k+1)
ŷi

= w
(k)
ŷi
−φ(xi ) {decrease weight of incorrect classes}

increment k
end if

until maximum number of epochs
output: model weights W (k)
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Reminder

Linear Classifier

ŷ = argmax (Wφ(x) + b) , W =

 w
>
1
...
w>K

 , b =

 b1
...
bK

 .
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Class Probabilities

• What if we need/want class probabilities?

• How to map fro K label scores to a probability distribution over Y?

z p

• Two possible mappings: softmax, a.k.a. logistic regression (next) and
sparsemax (later).
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Logistic Regression

• Recall: a linear model gives score wy
Tφ(x) for class y

• Mapping scores to posterior class conditional probabilities:

P(y |x) =
exp(wy

Tφ(x))

Zx
, where Zx =

∑
y ′∈Y

exp(wy ′
Tφ(x))

• Softmax transformation: exponentiation followed by normalization.

• Adding a constant to all the scores does not change the probabilities.

• Zx doesn’t depend on y : still a linear classifier. E.g., the MAP rule,

arg max
y

P(y |x) = arg max
y

exp(wy
Tφ(x))

= arg max
y

wy
Tφ(x)

• Allows for cost-sensitive decisions, beyond simple MAP.
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Binary Logistic Regression

• Binary case: Y = {±1}

• Scores: 0 for y = −1 and wTφ(x) for y = 1

P(y = +1 | x) =
exp(wTφ(x))

exp(0) + exp(wTφ(x))

=
1

1 + exp(−wTφ(x))

≡ σ(wTφ(x)).

• Sigmoid, or logistic, transformation (more later!)
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Sigmoid/Logistic Transformation

σ(z) =
1

1 + e−z

• Widely used in neural networks (more tomorrow!)

• “Squashes” a real number into [0, 1]

• The output can be interpreted as a probability

• Positive, bounded, strictly increasing, differentiable
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Binary Logistic Regression

• In two dimensions, i.e., w, φ(x) ∈ R2

• MAP boundary, P(y = +1 | x) = 1/2 ⇔ wTφ(x) = 0, is linear
w.r.t. φ(x).

• Some other threshold, P(y = +1 | x) = τ ⇔ wTφ(x) = log( τ
1−τ );

linear w.r.t. φ(x).
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Multinomial Logistic Regression

• Recall W = [w1, ...,wK ] ∈ RK×D and PW (y |x) =
exp(wy

Tφ(x))∑
y ′ exp(wy ′Tφ(x))

• How do we learn weights W ?

• Maximize the conditional log-likelihood, given training data:

Ŵ = arg max
W

log

(
N∏
t=1

PW (yt |xt)

)
= arg min

W
−

N∑
t=1

logPW (yt |xt) =

= arg min
W

N∑
t=1

log
∑
y ′
t

exp(wy ′
t

Tφ(xt)) − wyt
Tφ(xt)

 ,

• Ŵ is set to assign as much probability as possible to the correct
labels!
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• Ŵ is set to assign as much probability as possible to the correct
labels!

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 58 / 107



Logistic Regression

• This objective function is strictly convex

• Proof left as exercise! (hint, compute second derivatives, i.e., Hessian)

• Therefore any local minimum is a global minimum

• No closed form solution, but many numerical techniques

X Gradient methods (gradient descent, conjugate gradient)

X Quasi-Newton methods (L-BFGS, ...)
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Recap: Gradient Descent

• Goal: minimize f : Rd → R, for differentiable objective function f

• Take small steps in the negative gradient direction until a stopping
criterion is met:

x (t+1) ← x (t) − η(t)∇f (x (t))

• Choosing the step-size: crucial for convergence and performance.

• GD may work well, or not so well. There are many ways to improve it.
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Gradient Descent

• Objective function in logistic regression:

N∑
t=1

L(W ; (xt , yt)) =
N∑
t=1

(
log
∑
y ′

exp(wy ′
Tφ(x)) − wy

Tφ(x)
)

• Gradient descent:

X Set W (0) = 0

X Iterate until convergence (for suitable stepsize ηk):

W (k+1) = W (k) − ηk∇W

(∑N
t=1 L(W (k); (xt , yt))

)
= W (k) − ηk

∑N
t=1∇W L(W (k); (xt , yt))

• ∇W L(W (k)) is gradient of w.r.t. W , computed at W (k)

• L convex ⇒ gradient descent converges to global optimum
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Stochastic Gradient Descent

• Stochastic approximation of the gradient (more frequent updates,
convenient with large datasets)

• Set W (0) = 0 and iterate until convergence:

X Pick (xt , yt) randomly

X Update W (k+1) = W (k) − ηk∇W L(W (k); (xt , yt))

• i.e. approximate the gradient with noisy, unbiased, version using a
single sample

• Variants exist in-between batch and stochastic: mini-batches

• All guaranteed to find the optimal W (for suitable step sizes)
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SGD: Visual Summary

Figure by Gabriel Peyre. Highly recommended: twitter.com/gabrielpeyre

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 63 / 107
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Batch, Stochastic, and Minibatch Gradient Descent

• Minibatch: instead of single sample, sample subset B ⊂ {1, ...,N}.

• Use average gradient on minibatch:

W (k+1) = W (k) − ηk
1

|B|
∑
t∈B
∇W L(W (k); (xt , yt))
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Computing the Gradient

• All this requires computing ∇W L(W ; (xt , yt)), where

L(W ; (x , y)) = log
∑
y ′

exp(wy ′
Tφ(x)) − wy

Tφ(x)

• Some reminders:

X ∇W log F (W ) = 1
F (W )∇W F (W )

X ∇W expF (W ) = exp(F (W ))∇W F (W )

• One-hot vector representation of class y :

ey = [0, . . . , 0, 1︸︷︷︸
y

, 0, . . . , 0]> ∈ {0, 1}K , such that 1Tey = 1
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Computing the Gradient: Step by Step

∇W L(W ; (x , y)) = ∇W

log
∑
y′

exp(wy′
Tφ(x))−wy

Tφ(x)



= ∇W log
∑
y′

exp(wy′
Tφ(x))−∇Wwy

Tφ(x)

=
1∑

y′ exp(wy′
Tφ(x))

∑
y′
∇W exp(wy′

Tφ(x))−eyφ(x)>

=
1

Zx

∑
y′

exp(wy′
Tφ(x))∇Wwy′

Tφ(x)−eyφ(x)>

=
∑
y′

exp(wy′
Tφ(x))

Zx
ey′φ(x)>−eyφ(x)>

=
∑
y′

PW (y ′|x)ey′φ(x)>−eyφ(x)>

=




...
PW (y ′|x)

...

− ey
φ(x)>
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Logistic Regression Summary

• Conditional class probabilities:

PW (y |x) =
exp(wy

Tφ(x))

Zx

• Set weights to maximize conditional log-likelihood of training data:

Ŵ = arg max
W

∑
t

logPW (yt |xt) = arg minW
∑
t

L(W ; (xt , yt))

• Gradient can be computed

∇W L(W ; (x , y)) =
∑
y ′

PW (y ′|x)ey ′φ(x)>−eyφ(x)>

thus (S)GD (or any gradient-based algorithm) can be used.
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The Story So Far

• Logistic regression is discriminative: maximizes conditional likelihood

X also called log-linear model and max-entropy classifier

X no closed form solution.

X stochastic gradient updates (SGD):

W (k+1) = W (k) + ηk

eyφ(x)> −
∑
y ′

PW (k) (y ′|x) ey ′ φ(x)>



• Perceptron is a discriminative, non-probabilistic classifier

X perceptron updates:

W (k+1) = W (k) + eyφ(x)> − eŷφ(x)>

• Logistic regression SGD updates and perceptron updates look similar!
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Maximizing Margin

• Let γ > 0 denote the margin, and set the goal of maximizing it

max
U

γ

subject to
‖U‖ = 1

uT
ytφ(xt)− uT

y ′φ(xt) ≥ γ

∀(xt , yt) ∈ D,∀y ′ ∈ Y

• Note: the solution ensures a separating hyperplane, if there is one
(zero training error) – due to the hard constraint

• Fix ||U || = 1 since increasing ‖U‖ trivially produces larger margin
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Maximum Margin ⇔ Minimum Norm
Max Margin:

max
U

γ

subject to

‖U‖ = 1

uT
ytφ(xt)− uT

y ′φ(xt) ≥ γ

∀(xt , yt) ∈ D,∀y ′ ∈ Y

⇔

Min Norm:

min
W

1

2
||W ||2

such that:

wT
ytφ(xt)−wT

y ′φ(xt) ≥ 1

∀(xt , yt) ∈ D,∀y ′ ∈ Y

• Instead of fixing ||U || we fix the margin to 1

• Make substitution W = U
γ ; then we have ‖W ‖ = ‖U‖

γ = 1
γ .

• Quadratic programming (QP) problem: well known convex problem,
for which there are several techniques.
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Maximum Margin ⇔ Minimum Norm
Max Margin:

max
U

γ

subject to

‖U‖ = 1

uT
ytφ(xt)− uT

y ′φ(xt) ≥ γ

∀(xt , yt) ∈ D,∀y ′ ∈ Y

⇔

Min Norm:

min
W

1

2
||W ||2
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wT
ytφ(xt)−wT

y ′φ(xt) ≥ 1

∀(xt , yt) ∈ D,∀y ′ ∈ Y

• Instead of fixing ||U || we fix the margin to 1

• Make substitution W = U
γ ; then we have ‖W ‖ = ‖U‖

γ = 1
γ .

• Quadratic programming (QP) problem: well known convex problem,
for which there are several techniques.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 71 / 107



Support Vector Machines

• What if data is not separable?

Introduce and penalize slacks

• Slacks allow (penalized) violation of the margin constraints

Ŵ = arg minW ,ξ

1

2
||W ||2 + C

N∑
t=1

ξt

subject to

wT
ytφ(xt)−wT

y ′φ(xt) ≥ 1− ξt and ξt ≥ 0

∀(xt , yt) ∈ D and ∀y ′ ∈ Y

• Larger C: more examples correctly classified, but smaller margin.

• If data is separable, optimal solution has ξi = 0, ∀i

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 72 / 107



Support Vector Machines

• What if data is not separable? Introduce and penalize slacks

• Slacks allow (penalized) violation of the margin constraints
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Support Vector Machines: Hinge Loss View

W = arg minW ,ξ

1

2
||W ||2 + C

N∑
t=1

ξt

subject to

wT
ytφ(xt)−wT

y ′φ(xt) ≥ 1− ξt ∀y ′ 6= yt

• If W classifies (xt , yt) with margin 1, penalty ξt = 0

• Otherwise penalty/slack ξt = 1 + maxy ′ 6=yt w
T
y ′φ(xt)−wT

ytφ(xt)

• Hinge loss:

L(W ; (xt , yt)) = max (0, 1 + max
y ′ 6=yt

wT
y ′φ(xt)−wT

ytφ(xt))
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Support Vector Machines: Hinge Loss View

• SVM QP formulation:

Ŵ = arg min
W ,ξ

λ

2
||W ||2 +

N∑
t=1

ξt

subject to

ξt ≥ 1 + max
y ′ 6=yt

wT
y ′φ(xt)−wT

ytφ(xt), for t = 1, ...,N

• Hinge loss equivalent:

W = arg min
W

( N∑
t=1

max (0, 1−

margin of sample t︷ ︸︸ ︷(
wT

ytφ(xt)− max
y ′ 6=yt

wT
y ′φ(xt)

)
︸ ︷︷ ︸

L(W ; (xt ,yt))

)
+
λ

2
||W ||2
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Ŵ = arg min
W ,ξ

λ

2
||W ||2 +

N∑
t=1

ξt

subject to

ξt ≥ 1 + max
y ′ 6=yt

wT
y ′φ(xt)−wT

ytφ(xt), for t = 1, ...,N

• Hinge loss equivalent:

W = arg min
W

( N∑
t=1

max (0, 1−

margin of sample t︷ ︸︸ ︷(
wT

ytφ(xt)− max
y ′ 6=yt

wT
y ′φ(xt)

)
︸ ︷︷ ︸

L(W ; (xt ,yt))

)
+
λ

2
||W ||2

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 74 / 107



Hinge Loss

• Hinge: h(u) = max{0, 1− u}: piecewise linear, not everywhere
differentiable.

• Cannot use gradient descent

• But can use subgradient descent (almost the same)!
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Subgradients

• Defined for convex functions f : RD → R

• Generalizes the notion of gradient: in points where f is differentiable,
there is a single subgradient which equals the gradient.

• At points where f is non-differentiable, there are infinitely many
subgradients (an interval for D = 1).

• For D = 1 (figure above), a subgradient at x2 is the slope of any
tangent that stays below the function.
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Subgradients: Hinge Function

• Hinge: h(u) = max{0, 1− u}

• Subgradients:

X For u < 1, ∇̃uh(u) = −1

X For u > 1, ∇̃uh(u) = 0

X For u = 1, ∇̃uh(u) = any number in [−1, 0].

• Can take a subgradient at u = 1 to be 0

• For some f (x) = h(g(x)), if g is differentiable, a valid choice is thus

∇̃f (x) =

{
0, if g(x) ≥ 1
−∇g(x), if g(x) < 1
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Perceptron and Hinge-Loss

• SVM subgradient update (ignoring ‖W ‖2 term):

W (k+1) = W (k)−η

{
0, if wT

ytφ(xt)−maxy 6=yt w
T
y φ(xt) ≥ 1

(ey − eyt )φ(xt)
T , otherwise, w/ y = arg maxy 6=yt w

T
y φ(xt)

• Perceptron update is similar (but not equal):

W (k+1) = W (k)−η

{
0, if wT

ytφ(xt)−maxy w
T
y φ(xt) ≥ 0

(ey − eyt )φ(xt)
T , otherwise, w/ y = arg maxy 6=yt w

T
y φ(xt)

where η = 1

• Perceptron = SGD with zero-margin hinge-loss:

max
(
0,max

y 6=yt
wT

y φ(xt)−wT
ytφ(xt)

)
= ReLU(max

y 6=yt
wT

y φ(xt)−wT
ytφ(xt))
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Obtaining Probabilities

• Mapping from score vector z ∈ R|Y| to probability distribution over Y

z p ∆K−1 = {v ∈ RK
+ :

∑
i

vi = 1}︸ ︷︷ ︸
probability simplex

• Any such mapping ρ : R|Y| → ∆|Y|−1 should satisfy:

X for any z ∈ R|Y| and α ∈ R, ρ(z + α) = ρ(z)

X permutation equivariance: P, ρ(Pz) = Pρ(z), ∀ permutation matrix P

X monotonicity: zi ≥ zj ⇒
(
ρ(z)

)
i
≥
(
ρ(z)

)
j

• We already saw one such mapping: softmax. Next: sparsemax.
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Recap: Softmax Transformation

• Classical choice is softmax : R|Y| → ∆|Y|−1:

softmax(z) =

[
exp(z1)∑
j exp(zj)

, . . . ,
exp(z|Y|)∑
j exp(zj)

]

• Underlies logistic regression!

• Resulte has full support:
(
softmax(z)

)
i
> 0,∀z, i ∈ {1, ..., |Y|}

• A disadvantage if a sparse distribution is desired (keeping only the
most probable classes, in an adaptive way).

• Common workaround: threshold and renormalize.
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most probable classes, in an adaptive way).

• Common workaround: threshold and renormalize.
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Sparsemax (Martins and Astudillo, 2016)

• A sparse-friendly alternative is sparsemax : R|Y| → ∆|Y|−1.

• Key idea: Euclidean projection of z onto the probability simplex

sparsemax(z) := arg min
p∈∆|Y|−1

‖p − z‖2.

• May be at the boundary of the simplex, in which case sparsemax(z) is
sparse (has zeros)

• Retains many properties of softmax, namely differentiability

• Can be computed efficiently, with cost at most O(|Y| log |Y|)

• Essentially: sorting, shifting, and thresholding.
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The Binary Case

• Y = {1, 2}; parametrize z = (t, 0)

• The binary softmax is the logistic (sigmoid) function:

softmax1(z) =
1

1 + exp(−t)

• The binary sparsemax is a “hardened” version of the sigmoid:

− 3 − 2 − 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])
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Ternary Case

• Parameterize z = (t1, t2, 0) and plot softmax1(z) and sparsemax1(z)
as a function of t1 and t2

• sparsemax is piecewise linear, but asymptotically similar to softmax
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Softmax, sparsemax, and argmax

• Sparsemax is in-between softmax and argmax

softmax(z)

0

0.2

0.4

0.6

0.8

1

sparsemax(z)

0

0.2

0.4

0.6

0.8

1

argmax(z)

0

0.2

0.4

0.6

0.8

1

(Same z = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425])

• It is (it may be) sparse, but differentiable.
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Temperature

• We may include a “temperature” parameter T in softmax and
sparsemax:

• Scale the argument by 1/T : softmax(z/T ) and sparsemax(z/T )

• Zero temperature limit:

lim
T→0

softmax(z/T ) = lim
T→0

sparsemax(z/T ) = argmax(z)

• High temperature limit:

lim
T→∞

softmax(z/T ) = lim
T→0

sparsemax(z/T ) =
(

1
|Y| , ...,

1
|Y|

)
• The temperature controls how peaked the softmax is and how sparse

the sparsemax is.
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Loss Function for Sparsemax?

• The common choice for softmax:

X the classifier estimates P(y = c | x ;W )

X loss is the negative log-likelihood:

L(W ; (x , y)) = − logP(y | x ;W )

= − log [softmax(z(x))]y ,

where zc(x) is the score of class c .

• Loss gradient:

∇W L(W ; (x , y)) = −
(
eyφ(x)> − softmax(z(x))φ(x)>

)
• Not directly applicable to sparsemax: cannot compute log(0)
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Sparsemax Loss(Martins and Astudillo, 2016)

• The natural choice for a sparsemax output layer

• Compute estimates P(y | x ;W ) using sparsemax

• We would like the gradient to have the form:

∇W L(W ; (x , y)) = −
(
eyφ(x)> − sparsemax(z(x))φ(x)>

)
• This is achieved with the sparsemax loss:

L(W ; (x , y)) = −zy (x) +
1

2
‖ sparsemax(z(x))‖2 − z(x)> sparsemax(z(x)),

where zy (x) is the score of class y .
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Classification Losses (Binary Case)

• Let the correct label be y = 1 and define s = z2 − z1.

• Sparsemax loss in 2D becomes a “classification Huber loss”:
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Overfitting

• If a model is too complex (too many parameters), there is a the risk
of overfitting:

• We saw one example already with polynomial regression.
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Regularization

• Regularization aims at preventing overfitting

Ŵ = arg min
W

N∑
t=1

L(W ; (xt , yt)) + λΩ(W ),

Ω(W ): regularization function; λ: regularization parameter.

• `2 regularization (or Gaussian prior) promotes small weights:

Ω(W ) = 1
2‖W ‖

2
2 = 1

2

∑
y

‖wy‖2
2 = 1

2

∑
y

∑
j

w2
y ,j

• `1 regularization (Laplacian prior) promotes sparse weights!

Ω(W ) = ‖W ‖1 =
∑
y

‖wy‖1 =
∑
y

∑
j

|wy ,j |

• Easy to use `2 in gradient methods, since ∇W 1
2‖W ‖

2
2 = W .

• Not so easy to use `1 regularization.
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Bias, Variance, and their Tradeoff
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Double Descent

• A more modern view, compatible with large deep networks:

• In the interpolating regime, use minimum-norm criterion:

Ŵ = arg min
W
‖W ‖2, subject to

interpolation︷ ︸︸ ︷
N∑
t=1

L(W ; (xt , yt)) = 0

• Active research topic, pioneered by M. Belkin (2018).
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Double Descent: Intuition
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Outline

1 Regression

2 Classification

Perceptron

Logistic Regression

Support Vector Machines

Sparsemax

3 Regularization

4 Non-Linear Models
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Summary: Linear Classifiers

• We have covered:

X Perceptron

X Logistic and Sparsemax regression

X Support vector machines

• All lead to convex optimization problems ⇒ no issues with local
minima/initialization

• All assume the feature map φ is well engineered such that the data is
(nearly) linearly separable
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What If Data Are Not Linearly Separable?

• Engineer better features (often works!)

• Use kernel methods:

X work implicitly in high-dimensional feature spaces

X ... but still need to choose/design a good kernel

• Use one of many other methods: trees, random forests, nearest
neighbors, ...

• Use deep neural networks (tomorrow’s lecture!)

X embrace non-convexity and local minima

X instead of engineering features/kernels, engineer the model
architecture,

X ...and use many tricks of the trade.
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Nearest Neighbor Classifiers

• Instead of “training”, keep all the data D = {(xi , yi )Ni=1}
• For a test sample x , return the majority class in the k nearest

neighbors in {x1, ..., xN}

• Pros: no training, easy implementation, few assumptions, intuitive,
intrinsically explainable

• Cons: store all the data, need to define distance, not top (but decent)
performance, slow with large high-dim datasets (but there are tricks!)
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Nearest Neighbor Classifiers: Obsolete?
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Features vs Similarities

• Two perspectives on building machine learning systems:

1 Feature-based: describe object properties via features and build models
that use them.

X everything that we have seen so far, recall the feature map φ(x)

2 Similarity-based: don’t describe objects by their properties; rather,
build systems based on comparing objects to each other

X k nearest neighbors (previous slide); Gaussian processes; kernel
methods (next)

• Sometimes the diference is unclear
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Kernels

• Consider the set of objects X (no assumptions)

• A kernel is a similarity function κ : X× X→ R between pairs of
objects.

• A valid kernel is symmetric

κ(xi , xj) = κ(xj , xi )

and positive semi-definite (next)

• Given set of objects {x1, ..., xN}, the Gram matrix K is the N × N
matrix defined as:

Ki , j = κ(xi , xj)

• The kernel is positive semi-definite if, for all N ∈ N, all sets of N
objects {x1, ..., xN} ⊆ X, and any v ∈ RN

vKvT ≥ 0
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Kernels

• Mercer’s Theorem: for any kernel κ : X× X→ R, there exists some
feature mapping φ : X→ H, such that

κ(xi , xj) = φ(xi ) · φ(xj)

• A kernel corresponds to some a mapping in some implicit feature
space!

• Kernel trick: take a feature-based model (SVMs, logistic); replace
explicit feature computations with kernel evaluations!

wy
Tφ(x) =

N∑
i=1

∑
y∈Y

αi ,yκ(x , xi ) for some αi ,y ∈ R

• Extremely popular idea in the 1990-2000s!
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Kernel Trick Illustration

• Take X = R2; feature map: φ([x1, x2]) = [x2
1 ,
√

2x1 x2, x
2
2 ] ∈ R3

φ(x) · φ(z) = [x2
1 ,
√

2x1 x2, x
2
2 ] · [z2

1 ,
√

2z1 z2, z
2
2 ]

= x2
1 z2

1 + 2x1z1x2z2 + x2
2 z2

2

= ([x1 x2] · [z1, z2])2

= κ(x , z)

• The inner product in R3 is a function of the inner product in R2
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Kernels = Tractable Non-Linearity

• A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

• Computing a non-linear kernel is often better computationally than
calculating the corresponding dot product in the high dimension
feature space

• Many models can be “kernelized” – learning algorithms generally
solve the dual optimization problem (also convex)

• Drawback: quadratic dependency on dataset size

• Kernels decouple the learning algorithm (e.g., logistic, SVM) from the
nature of the data: strings, images, sets, signals, graphs, probability
distributions, ...
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Conclusions

• Linear models are a broad class including the well-known perceptron,
logistic regression, support vector machines

• They all involve manipulating weights and features

• They either lead to closed-form solutions or convex optimization
problems (no local minima)

• Stochastic gradient descent is useful if training datasets are large

• However, linear models rely on specification of feature representations

• Tomorrow: methods that learn internal representations
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Recommended Books

Thank you! Questions?
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