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Day 0

Basic Tutorials

0.1 Today’s assignment

In this class we will introduce several fundamental concepts needed further ahead. We start with an introduc-
tion to Python, the programming language we will use in the lab sessions, and to Matplotlib and Numpy, two
modules for plotting and scientific computing in Python, respectively. Afterwards, we present several notions
on probability theory and linear algebra. Finally, we focus on numerical optimization. The goal of this class is
to give you the basic knowledge for you to understand the following lectures. We will not enter in too much
detail in any of the topics.

0.2 Manually Installing the Tools in your own Computer

0.2.1 Desktops vs. Laptops

If you have decided to use one of our provided desktops, all installation procedures have been carried out. You
merely need to go to the 1xmls-toolkit-student folder inside your home directory and start working!
You may go directly to section [0.3} If you wish to use your own laptop, you will need to install Python, the
required Python libraries and download the LXMLS code base. It is important that you do this as soon as
possible (before the school starts) to avoid unnecessary delays. Please follow the install instructions.

0.2.2 Basic Install and Troubleshooting
To install, just follow the instructions in our Github repository for the student version of our toolkit
® https://github.com/LxMLS/lxmls—toolkit/tree/student#readme.

The student branch contains the same code as master branch, with some parts deleted, which you must
complete in the following exercises. The following install instructions are same as the one on GitHub, provided
here for completeness.

The basic install instructions use uv. If you are on Linux or MacOS, install uv with

curl -LsSf https://astral.sh/uv/install.sh | sh

If you are on Windows, use

powershell -ExecutionPolicy ByPass —-c "irm https://astral.sh/uv/install.psl | iex"

If you don’t have Python on your system or want to install a specific version (the labs require the Python
version to be between 3.9 and 3.12) you can install it using uv:
uv python install 3.10

You can then install all required dependencies and create a virtual environment using the one-liner:
uv sync --extra cpu

If your device has access to an Nvidia GPU, you can replace cpu with cul18, cul24, or cul26 depend-
ing on the CUDA version your GPU supports. Use nvidia-smi or nvcc --version to check the CUDA
version.

To activate your virtual environment with all installed dependencies on Linux or MacOS use source
.venv/bin/activate. To do so on Windows use .venv


https://github.com/LxMLS/lxmls-toolkit/tree/student#readme

Check if your virtual environment is active by running python --version && which python. This
should display the correct version of python with a path from within the current virtual environment.

0.2.3 Deciding on the IDE and interactive shell to use

An Integrated Development Environment (IDE) includes a text editor and various tools to debug and interpret
complex code.

Important: As the labs progress you will need an IDE, or at least a good editor and knowledge of pdb/ipdb.
This will not be obvious the first days since we will be seeing simpler examples.

Easy IDEs to work with Python are PyCharm and Visual Studio Code, but feel free to use the software you
feel more comfortable with. PyCharm and other well known IDEs like Spyder are provided with the Anaconda
installation.

Aside of an IDE, you will need an interactive command line to run commands. This is very useful to
explore variables and functions and quickly debug the exercises. For the most complex exercises you will still
need an IDE to modify particular segments of the provided code. As interactive command line we recommend
the Jupyter notebook. This also comes installed with Anaconda and is part of the pip-installed packages. The
Jupyter notebook is described in the next section. In case you run into problems or you feel uncomfortable
with the Jupyter notebook you can use the simpler iPython command line.

0.2.4 Jupyter Notebook

Jupyter is a good choice for writing Python code. It is an interactive computational environment for data sci-
ence and scientific computing, where you can combine code execution, rich text, mathematics, plots and rich
media. The Jupyter Notebook is a web application that allows you to create and share documents, which con-
tains live code, equations, visualizations and explanatory text. It is very popular in the areas of data cleaning
and transformation, numerical simulation, statistical modeling, machine learning and so on. It supports more
than 40 programming languages, including all those popular ones used in Data Science such as Python, R, and
Scala. It can also produce many different types of output such as images, videos, LaTex and JavaScript. More
over with its interactive widgets, you can manipulate and visualize data in real time.

The main features and advantages using the Jupyter Notebook are the following:

* In-browser editing for code, with automatic syntax highlighting, indentation, and tab completion/intro-
spection.

* The ability to execute code from the browser, with the results of computations attached to the code which
generated them.

¢ Displaying the result of computation using rich media representations, such as HTML, LaTeX, PNG,
SVG, etc. For example, publication-quality figures rendered by the matplotlib library, can be included
inline.

¢ In-browser editing for rich text using the Markdown markup language, which can provide commentary
for the code, is not limited to plain text.

* The ability to easily include mathematical notation within markdown cells using LaTeX, and rendered
natively by MathJax.

The basic commands you should know are

Esc Enter command mode
Enter Enter edit mode
up/down Change between cells

Ctrl + Enter Runs code on selected cell
Shift + Enter | Runs code on selected cell, jumps to next cell
restart button | Deletes all variables (useful for troubleshooting)

Table 1: Basic Jupyter commands

A more detailed user guide can be found here:

http://jupyter—-notebook-beginner—-guide.readthedocs.io/en/latest/index.html



0.3 Solving the Exercises

In the student branch we provide the solve.py script. This can be used to solve the exercises of each day,
e.g.,

python ./solve.py linear_classifiers

where the solvable days are: linear_classifiers, sequence_models, structure_predictors, non-linear_classifiers,
non-linear_sequence_models, reinforcement_learning. You can also undo the solving of an exercise by using

python ./solve.py —--undo linear_classifiers

Note that this script just downloads the master or student versions of certain files from the GitHub repos-
itory. It needs an Internet connection. Since some exercises require you to have the exercises of the previous
days completed, the monitors may ask you to use this function. Important: Remember to save your own
version of the code, otherwise it will be overwritten!

0.4 Python

0.4.1 Python Basics
Pre-requisites

At this point you should have installed the needed packages. You need also to feel comfortable with an IDE to
edit code and an interactive command line. See previous sections for the details. Your work folder will be

Ixmls-toolkit-student
from there, start your interactive command line of choosing, e.g.,
Jjupyter—-notebook

and proceed with the following sections.

Running Python code

We will start by creating and running a dummy program in Python which simply prints the “Hello World!”
message to the standard output (this is usually the first program you code when learning a new programming
language). There are two main ways in which you can run code in Python:

From afile — Create a file named yourfile.py and write your program in it, using the IDE of your choice,
e.g., PyCharm:

('Hello World!")

After saving and closing the file, you can run your code by using the run functionality in your IDE. If
you wish to run from a command line instead do

python yourfile.py

This will run the program and display the message “Hello World!”. After that, the control will return to
the command line or IDE.

In the interactive command line — Start your preferred interactive command line, e.g., Jupyter-notebook.
There, you can run Python code by simply writing it and pressing enter (ctr+enter in Jupyter).

("Hello, World!")

: Hello, World!




However, you can also run Python code written into a file.

In[]: run ./yourfile.py

OQut[]: Hello, World!

Keep in mind that you can easily switch between these two modes. You can quickly test commands directly
in the command line and, e.g., inspect variables. Larger sections of code can be stored and run from files.
Help and Documentation

There are several ways to get help on Jupyter:

* Adding a question mark to the end of a function or variable and pressing Enter brings up associated doc-
umentation. Unfortunately, not all packages are well documented. Numpy and matplotlib are pleasant
exceptions;

* help(’if’) gets the online documentation for the if keyword;
* help (), enters the help system.

* When at the help system, type g to exit.

0.4.2 Python by Example
Basic Math Operations

Python supports all basic arithmetic operations, including exponentiation. For example, the following code:

will produce the following output in Python 2:

8
-2
15
0
243

and the following output in Python 3:

8
-2
15
0.6
243

Important: Notice that in Python 2 division is always considered as integer division, hence the result being
0 on the example above. To force a floating point division in Python 2 you can force one of the operands to be
a floating point number:

(3 / 5.0)



For Python 3, the division is considered float point, so the operation (3 / 5) or (3 / 5.0) is always 0.6.

Also, notice that the symbol * * is used as exponentation operator, unlike other major languages which use
the symbol ~. In fact, the ~ symbol has a different meaning in Python (bitwise XOR) so, in the beginning, be
sure to double-check your code if it uses exponentiation and it is giving unexpected results.

Data Structures

In Python, you can create lists of items with the following syntax:

countries = ['Portugal', 'Spain', 'United Kingdom']

A string should be surrounded by either apostrophes (') or quotes (“). You can access a list with the following:

e len (L), which returns the number of items in L;
e L[i], which returns the item at index i (the first item has index 0);

* L[i:3j], which returns a new list, containing all the items between indexes i and j — 1, inclusively.

Exercise 0.1 Use L[i:j] to return the countries in the Iberian Peninsula.

Loops and Indentation

A loop allows a section of code to be repeated a certain number of times, until a stop condition is reached.
For instance, when the list you are iterating over has reached its end or when a variable has reached a certain
value (in this case, you should not forget to update the value of that variable inside the code of the loop). In
Python you have while and for loop statements. The following two example programs output exactly the
same using both statements: the even numbers from 2 to 8.

range (2,10,2):
(1)

You can copy and run this in Jupyter. Alternatively you can write this into your yourfile.py file and run
it. Do you notice something? It is possible that the code did not act as expected or maybe an error message
popped up. This brings us to an important aspect of Python: indentation. Indentation is the number of blank
spaces at the leftmost of each command. This is how Python differentiates between blocks of commands inside
and outside of a statement, e.g., while or for. All commands within a statement have the same number of
blank spaces at their leftmost. For instance, consider the following code:

and its output:




Exercise 0.2 Can you then predict the output of the following code?:

a=1

Bear in mind that indentation is often the main source of errors when starting to work with Python. Try to get
used to it as quickly as possible. It is also recommendable to use a text editor that can display all characters e.g.
blank space, tabs, since these characters can be visually similar but are considered different by Python. One of
the most common mistakes by newcomers to Python is to have their files indented with spaces on some lines
and with tabs on other lines. Visually it might appear that all lines have proper indentation, but you will get
an IndentationError message if you try it. The recommendedﬂ way is to use 4 spaces for each indentation
level.

Control Flow

The if statement allows to control the flow of your program. The next program outputs a greeting that
depends on the time of the day.

hour = 16
hour < 12:
('Good morning!")
hour >= 12 hour < 20:
('Good afternoon!"')

('Good evening!'")

Functions

A function is a block of code that can be reused to perform a similar action. The following is a function in
Python.

greet (hour) :
hour < 12:
('Good morning!")
hour >= 12 hour < 20:
('Good afternoon!')

('Good evening!")

You can write this command into Jupyter directly or write it into a file which you then run in Jupyter. Once
you do this the function will be available for you to use. Call the function greet with different hours of the
day (for example, type greet (16) ) and see that the program will greet you accordingly.

Exercise 0.3 Note that the previous code allows the hour to be less than 0 or more than 24. Change the code in order to
indicate that the hour given as input is invalid. Your output should be something like:

greet (50)
Invalid hour: it should be between 0 24.
greet (-5)
Invalid hour: it should be between 0 24.

1ThePEP8domnnaﬁ(www.python.org/dev/peps/pep—OOO8)Sthecﬁﬁchlcmﬁngs@deguﬁkﬂbrthePyﬂuﬁdanguage



Profiling

If you are interested in checking the performance of your program, you can use the command $prun in Jupyter.
For example:

myfunction (x) :

$prun myfunction (22)

The output of the $prun command will show the following information for each function that was called
during the execution of your code:

* ncalls: The number of times this function was called. If this function was used recursively, the output
will be two numbers; the first one counts the total function calls with recursions included, the second
one excludes recursive calls.

* tottime: Total time spent in this function, excluding the time spent in other functions called from within
this function.

* percall: Same as tottime, but divided by the number of calls.

* cumtime: Same as tottime, but including the time spent in other functions called from within this
function.

* percall: Same as cumtime, but divided by the number of calls.

e filename:lineno (function): Tells you where this function was defined.

Debugging in Python

During the lab sessions, there will be situations in which we will use and extend modules that involve elabo-
rated code and statements, like classes and nested functions. Although desirable, it should not be necessary for
you to fully understand the whole code to carry out the exercises. It will suffice to understand the algorithm
as explained in the theoretical part of the class and the local context of the part of the code where we will be
working. For this to be possible is very important that you learn to use an IDE.

An alternative to IDEs, that can also be useful for quick debugging in Jupyter, is the pdb module. This
will stop the execution at a given point (called break-point) to get a quick glimpse of the variable structures
and to inspect the execution flow of your program. The ipdb is an improved version of pdb that has to be
installed separately. It provides additional functionalities like larger context windows, variable auto complete
and colors. Unfortunately ipdb has some compatibility problems with Jupyter. We therefore recommend to
use ipdb only in spartan configurations such as vim+ipdb as IDE.

In the following example, we use this module to inspect the greet function:

greet (hour) :
hour < 12:
('"Good morning!")
hour >= 12 hour < 20:
('Good afternoon!')

pdb; pdb.set_trace()
('Good evening!'")

Load the new definition of the function by writing this code in a file or a Jupyter cell and running it. Now,
if you try greet (50) the code execution should stop at the place where you located the break-point (that is,
in the print ( Good evening!’) statement). You can now run new commands or inspect variables. For
this purpose there are a number of commands you can useﬂ but we provide here a short table with the most
useful ones:

Getting back to our example, we can type n(ext) once to execute the line we stopped at

2Thecompletelistcanbefoundathttp://docs.python.org/library/pdb.html
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(h)elp Starts the help menu

(p)rint Prints a variable

(p)retty(p)rint Prints a variable, with line break (useful for lists)

(n)ext line Jumps to next line

(s)tep Jumps inside of the function we stopped at

c(ont(inue)) Continues execution until finding breakpoint or finishing

(r)eturn Continues execution until current function returns

b(reak) n Sets a breakpoint in in line n

b(reak) n, condition | Sets a conditional breakpoint in in line n

1(ist) [n], [m] Prints 11 lines around current line. Optionally starting in line n or between lines n, m
w(here) Shows which function called the function we are in, and upwards (stack)

u(p) Goes one level up the stack (frame of the function that called the function we are on)
d(down) Goes one level down the stack

blank Repeat the last command

expression Executes the python expression as if it was in current frame

Table 2: Basic pdb/ipdb commands, parentheses indicates abbreviation

pdb> n
> ./lxmls-toolkit/yourfile.py (8)greet ()

7 pdb; pdb.set_trace()
—-————> 8 ('Good evening!")

Now we can inspect the variable hour using the p(retty)p(rint) option

pdb> pp hour
50

From here we could keep advancing with the n(ext) option or set a b(reak) point and type c(ontinue) to
jump to a new position. We could also execute any python expression which is valid in the current frame
(the function we stopped at). This is particularly useful to find out why code crashes, as we can try different
alternatives without the need to restart the code again.

0.4.3 Exceptions

Occasionally, a syntactically correct code statement may produce an error when an attempt is made to execute
it. These kind of errors are called exceptions in Python. For example, try executing the following:

10/0 I

A ZeroDivisionError exception was raised, and no output was returned. Exceptions can also be forced to
occur by the programmer, with customized error messages ﬂ

ValueError ("Invalid input value.")

Exercise 0.4 Rewrite the code in Exercise 0.3 in order to raise a ValueError exception when the hour is less than 0 or
more than 24.

Handling of exceptions is made with the try statement:

3Foracompletelistofbuilt—inexceptions,seehttp://docs.python.org/3/library/exceptions.html
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True:

x = int (input ("Please enter a number: "))

ValueError:
("Oops! That was no valid number. Try again...")

It works by first executing the try clause. If no exception occurs, the except clause is skipped; if an exception
does occur, and if its type matches the exception named in the except keyword, the except clause is executed;
otherwise, the exception is raised and execution is aborted (if it is not caught by outer try statements).

Extending basic Functionalities with Modules

In Python you can load new functionalities into the language by using the import, from and as keywords.
For example, we can load the numpy module as

numpy np

Then we can run the following on the Jupyter command line:

np.var?

np.random.normal?

The import will make the numpy tools available through the alias np. This shorter alias prevents the code
from getting too long if we load lots of modules. The first command will display the help for the method
numpy . var using the previously commented symbol ?. Note that in order to display the help you need the
full name of the function including the module name or alias. Modules have also submodules that can be
accessed the same way, as shown in the second example.

Organizing your Code with your own modules

Creating you own modules is extremely simple. you can for example create the file in your work directory
my_tools.py

and store there the following code

my_print (input) :

(input)

From Jupyter you can now import and use this tool as

my_tools

my_tools.my_print ("This works!")

Important: When you modify a module, you need to reload the notebook page for the changes to take
effect. Autoreload is set by default in the schools notebooks.
for the latter. Other ways of importing one or all the tools from a module are

my_tools my_print # my_print directly accesible in code
my_tools * # will make all functions in my_tools accessible

However, this makes reloading the module more complicated. You can also store tools ind different folders.
For example, if you store the previous example in the folder



day0_tools
and store inside an empty file called
__init__ .py

then the following import will work

day0_tools.my_tools I

0.4.4 Matplotlib — Plotting in Python

Matplotlibﬁ is a plotting library for Python. It supports 2D and 3D plots of various forms. It can show them
interactively or save them to a file (several output formats are supported).

numpy np
matplotlib.pyplot plt

X = np.linspace (-4, 4, 1000)

plt.plot (X, X*x*2xnp.cos (X*%x2))
plt.savefig("simple.pdf")

Exercise 0.5 Try running the following on Jupyter, which will introduce you to some of the basic numeric and plotting
operations.

# This will import the numpy library
# and give it the np abbreviation

numpy np

# This will import the plotting library
matplotlib.pyplot plt

# Linspace will return 1000 points,
evenly spaced between -4 and +4
X = np.linspace (-4, 4, 1000)

e

# Y[1] = X[1]#%2
Y = X*#2

# Plot using a red line ('r')
plt.plot (X, Y, 'r'")

# arange returns integers ranging from -4 to +4
# (the upper argument is excluded!)
Ints = np.arange (-4,5)

# We plot these on top of the previous plot
# using blue circles (o means a little circle)
plt.plot (Ints, Intsx**2, 'bo')

# You may notice that the plot is tight around the line
# Set the display limits to see better
plt.xlim(-4.5,4.5)

plt.ylim(-1,17)

plt.show()

4http://matplotlib.org/
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0.4.5 Numpy - Scientific Computing with Python

NumpyE] is a library for scientific computing with Python.

Multidimensional Arrays

The main object of numpy is the multidimensional array. A multidimensional array is a table with all elements
of the same type and can have several dimensions. Numpy provides various functions to access and manipu-
late multidimensional arrays. In one dimensional arrays, you can index, slice, and iterate as you can with lists.
In a two dimensional array M, you can perform these operations along several dimensions.

* M]Jij], to access the item in the i" row and jth column;
* M][ij,;], to get the all the rows between the it and j— 1th,

e M[;,i], to get the i column of M.

Again, as it happened with the lists, the first item of every column and every row has index 0.

numpy np

A = np.array ([
[1,2,31,
[2,3,471,
[4,5,6]1)

A[O0,:] # This is [1,2,3]
A[Q0] # This is [1,2,3] as well

A[:,0] # this is [1,2,4]

A[l:,0] # This is [ 2, 4 ]. Why?
# Because it 1is the same as A[l:n,0] where n is the size of the array.

Mathematical Operations

There are many helpful functions in numpy. For basic mathematical operations, we have np.log, np.exp,
np.cos,...with the expected meaning. These operate both on single arguments and on arrays (where they
will behave element wise).

matplotlib.pyplot plt
numpy np

X = np.linspace (0, 4 x np.pi, 1000)
C = np.cos (X)
S = np.sin(X)

plt.plot (X, C)
plt.plot (X, S)

Other functions take a whole array and compute a single value from it. For example, np . sum, np.mean,... These
are available as both free functions and as methods on arrays.

numpy np
A = np.arange (100)
# These two lines do exactly the same thing

(np.mean (A))
(A.mean ())

Shttp://www.numpy.org/
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C = np.cos(A)
(C.ptp ()

Exercise 0.6 Run the above example and lookup the ptp function/method (use the ? functionality in Jupyter).
Exercise 0.7 Consider the following approximation to compute an integral

1 & £(i/1000)
/0 fed~ Y, 500

Use numpy to implement this for f(x) = x2. You should not need to use any loops. Note that integer division in
Python 2.x returns the floor division (use floats —e.g. 5.0/2.0 — to obtain rationals). The exact value is 1/3. How close
is the approximation?

0.5 Essential Linear Algebra

Linear Algebra provides a compact way of representing and operating on sets of linear equations.
4X1 — 5X2 =13
—2X1 + 3x2 =9

This is a system of linear equations in 2 variables. In matrix notation we can write the system more com-
pactly as

with

0.5.1 Notation

We use the following notation:

e By A € R™*", we denote a matrix with m rows and n columns, where the entries of A are real numbers.

* By x € R", we denote a vector with n entries. A vector can also be thought of as a matrix with n rows and
1 column, known as a column vector. A row vector — a matrix with 1 row and n columns is denoted as
xT, the transpose of x.

¢ The ith element of a vector x is denoted x;:

Exercise 0.8 In the rest of the school we will represent both matrices and vectors as numpy arrays. You can create arrays
in different ways, one possible way is to create an array of zeros.

numpy np

m = 3
n =2
a = np.zeros([m,n])

12



You can check the shape and the data type of your array using the following commands:

(a.shape)
(3, 2)

(a.dtype.name)
floaté64

This shows you that “a” is an 3*2 array of type float64. By default, arrays contain 64 bizﬁ floating point numbers. You
can specify the particular array type by using the keyword dtype.

a = np.zeros([m,n],dtype=int)
(a.dtype)
inté64

You can also create arrays from lists of numbers:

a = np.array([[2,3],[3,4]])
(a)

[[2 3]

[3 4]]

There are many more ways to create arrays in numpy and we will get to see them as we progress in the classes.

0.5.2 Some Matrix Operations and Properties

e Product of two matrices A € R™*" and B € R"*? is the matrix C = AB € R™*?, where
n
Cij = ), AuByj.
k=1

Exercise 0.9 You can multiply two matrices by looping over both indexes and multiplying the individual entries.

a = np.array([[2,3],[3,4]])
b = np.array([(1,1],[1,1]])
a_diml, a_dim2 = a.shape
b_diml, b_dim2 = b.shape
c = np.zeros([a_diml,b_dim2])
1 range (a_diml) :
j range (b_dim2) :
k range (a_dim2) :
cli, j] += ali,k]+b[k, F]

(c)

This is, however, cumbersome and inefficient. Numpy supports matrix multiplication with the dot function:

d = np.dot (a,b)

(d)

Important note: with numpy, you must use dot to get matrix multiplication, the expression a * b denotes
element-wise multiplication.

* Matrix multiplication is associative: (AB)C = A(BC).

¢ Matrix multiplication is distributive: A(B + C) = AB + AC.

50n your computer, particularly if you have an older computer, int might denote 32 bits integers
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* Matrix multiplication is (generally) not commutative : AB # BA.

e Given two vectors x,y € R” the product x"y, called inner product or dot product, is given by

A
T Y2 -
XyeR=[x x ... x| : =Y xiy:.
: i=1
Yn

a = np.array([1l,2])
b = np.array([1,1])

np.dot (a,b)

e Given vectors x € R” and y € R", the outer product xy! € R"*" is a matrix whose entries are given by
Ty, —
(xy")ij = xiy;,

X1 X1Y1 X1Y2 . X1Yn

X2 X2Y1 X2Y2 ce. X2Yn
xy! € R™" = : (1 v oo yn ] = ) . .

Xm XmY1 XmY2 - XmYn

np.outer (a,b)
array ([[1, 1]

(2, 211)

* The identity matrix, denoted I € R"*", is a square matrix with ones on the diagonal and zeros every-
where else. That is,
I = { 1 i=j
710 i#]

It has the property that for all A € R"*", Al = A = IA.

I = np.eye(2)
x = np.array([2.3, 3.4])

(1)
(np.dot (I,x))

* A diagonal matrix is a matrix where all non-diagonal elements are 0.

* The transpose of a matrix results from “’flipping” the rows and columns. Given a matrix A € R"*", the
transpose AT € R"*™ is the n x m matrix whose entries are given by (AT)Z-]- = Aji.
Also, (ANYT=A; (AB)T=BTAT, (A+B)T=AT +BT

In numpy, you can access the transpose of a matrix as the T attribute:

A = np.array ([

(A.T)

e A square matrix A € R"*" is symmetric if A = AT.

n
e The trace of a square matrix A € R"*" is the sum of the diagonal elements, tr(A) = Y A;;
=1

14



0.5.3 Norms

The norm of a vector is informally the measure of the “length” of the vector. The commonly used Euclidean

or ¢, norm is given by
n
Ixll2 = 4 3 7.
i=1

* More generally, the £, norm of a vector x € R", where p > 1 is defined as

" 1y
Ixl[p = (ZIJ@I”) :
i=1

n
Note: ¢ norm: ||x|1 = ¥ |« Lo nOrm : ||X||c = max |x;| .
i=1 [

0.5.4 Linear Independence, Rank, and Orthogonal Matrices

A set of vectors {x1,xp,...,X,} C R™ is said to be (linearly) independent if no vector can be represented as a
linear combination of the remaining vectors. Conversely, if one vector belonging to the set can be represented
as a linear combination of the remaining vectors, then the vectors are said to be linearly dependent. That is, if

X]' = szixi

i#]
for some j € {1,...,n} and some scalar values &y, ..., &;_1,&11,...,&, € R.

¢ The rank of a matrix is the number of linearly independent columns, which is always equal to the number
of linearly independent rows.

e For A € R™*", rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full rank.
e For A € R"™*" rank(A) = rank(AT).

e For A € R™*", B € R"*, rank(AB) < min(rank(A),rank(B)).

e For A,B € R™*", rank(A + B) < rank(A) + rank(B).

e Two vectors x,y € R" are orthogonal if x'y = 0. A square matrix U € R"*" is orthogonal if all its
columns are orthogonal to each other and are normalized (||x||; = 1), It follows that

vTu=1=UU".

0.6 Probability Theory

Probability is the most used mathematical language for quantifying uncertainty. The sample space X is the set
of possible outcomes of an experiment. Events are subsets of X.

Example 0.1 (discrete space) Let H denote “heads” and T denote “tails.” If we toss a coin twice, then X = {HH,HT, TH, TT}.
The event that the first toss is heads is A = {HH, HT}.
A sample space can also be continuous (eg., X = R). The union of events A and B is defined as A|JB =
n
{weX|weAVwe B} If Ay, ..., Ayisasequence of sets then |J A; = {w € X | w € A, for at least one i}.

i=1
We say that Ay, ..., A, are disjoint or mutually exclusive if A; N A =2 whenever i # j.

We want to assign a real number P(A) to every event A, called the probability of A. We also call P a
probability distribution or probability measure.
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Definition 0.1 A function P that assigns a real number P(A) to each event A is a probability distribu-
tion or a probability measure if it satisfies the three following axioms:

Axiom 1: P(A) > 0 for every A

Axiom 2: P(X) =1
Axiom 3: If Ay, ..., Ay are disjoint then

P (O Ai> = iP(Al)
i=1 1=

One can derive many properties of P from these axioms:

P(w) = 0
ACB = P(A)<P(B)
0< P(A) <1
P(A") = 1-P(A) (A isthecomplementof A)
P(AUB) = P(A)+P(B)—P(ANB)

ANB=¢ = P(AUB)=P(A)+ P(B).

An important case is when events are independent, this is also a usual approximation which lends several
practical advantages for the computation of the joint probability.

Definition 0.2 Two events A and B are independent if
P(AB) = P(A)P(B) (1)

often denoted as A 1L B. A set of events {A; : i € 1} is independent if

P (ﬂ Al-) =[1P4)
ic] i€]

for every finite subset | of L.

For events A and B, where P(B) > 0, the conditional probability of A given that B has occurred is defined
as:

P(A|B) = )

Events A and B are independent if and only if P(A|B)
independence and conditional probability.

A preliminary result that forms the basis for the famous Bayes’ theorem is the law of total probability which
states that if Aq,..., Ay is a partition of X, then for any event B,

P(A). This follows from the definitions of

k
2 (B|A;)P ®)

Using Equations|2|and 3| one can derive the Bayes’ theorem.

Theorem 0.1 (Bayes” Theorem) Let Aq,... Ay be a partition of X such that P(A;) > 0 for each i. If
P(B) > O then, foreachi=1,...,k,

_P(B|A;)P(A))
P(Ai|B) - P(B|A])P(A]) (4)

Remark 0.1 P(A;) is called the prior probability of A; and P(A;|B) is the posterior probability of A;.

Remark 0.2 In Bayesian Statistical Inference, the Bayes’ theorem is used to compute the estimates of distribution pa-
rameters from data. Here, prior is the initial belief about the parameters, likelihood is the distribution function of the
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parameter (usually trained from data) and posterior is the updated belief about the parameters.

0.6.1 Probability distribution functions

A random variable is a mapping X : X — R that assigns a real number X(w) to each outcome w. Given a ran-
dom variable X, an important function called the cumulative distributive function (or distribution function)
is defined as:

Definition 0.3 The cumulative distribution function CDF Fx : R — [0,1] of a random variable X is defined by
Fx(x) = P(X < x).

The CDF is important because it captures the complete information about the random variable. The CDF
is right-continuous, non-decreasing and is normalized (limy—, —«F(x) = 0 and limy_F(x) = 1).

Example 0.2 (discrete CDF) Flip a fair coin twice and let X be the random variable indicating the number of heads.
Then P(X =0) = P(X =2) =1/4and P(X = 1) = 1/2. The distribution function is

0 x <0
) 1/4 0<x<1
Ex()=9 374 1<x<2
1 x> 2.

Definition 0.4 X is discrete if it takes countable many values {x1,x,...}. We define the probability function or
probability mass function for X by

Definition 0.5 A random variable X is continuous if there exists a function fx such that fx > 0 for all x,

[ fx(x)dx =1 and for everya < b

b
P(a< X <b)= / Fx(x)dx. 5)
a
The function fx is called the probability density function (PDF). We have that
x
Fx(x) = [ (bt

and fx(x) = F;((x) at all points x at which Fx is differentiable.

A discussion of a few important distributions and related properties:

0.6.2 Bernoulli

The Bernoulli distribution is a discrete probability distribution that takes value 1 with the success probability
p and 0 with the failure probability 4 = 1 — p. A single Bernoulli trial is parametrized with the success
probability p, and the input k € {0, 1} (1=success, O=failure), and can be expressed as

flsp) =p'gF=pa-ptH*

0.6.3 Binomial

The probability distribution for the number of successes in n Bernoulli trials is called a Binomial distribution,
which is also a discrete distribution. The Binomial distribution can be expressed as exactly j successes is

flismp) = ( ; )pfq”‘f= ( ; )Pj(l—p)”—f

where 7 is the number of Bernoulli trials with probability p of success on each trial.
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0.6.4 Categorical

The Categorical distribution (often conflated with the Multinomial distribution, in fields like Natural Lan-
guage Processing) is another generalization of the Bernoulli distribution, allowing the definition of a set of
possible outcomes, rather than simply the events “success” and “failure” defined in the Bernoulli distribution.
Considering a set of outcomes indexed from 1 to #, the distribution takes the form of

f(xl/ plr-'-/ Pn) = Pz

where parameters py, ..., py is the set with the occurrence probability of each outcome. Note that we must
ensure that} ' ; p; =1,sowe canset p, =1 — Z?:_ll pi-

0.6.5 Multinomial

The Multinomial distribution is a generalization of the Binomial distribution and the Categorical distribution,
since it considers multiple outcomes, as the Categorial distribution, and multiple trials, as in the Binomial
distribution. Considering a set of outcomes indexed from 1 to n, the vector [x1, ..., x|, where x; indicates the
number of times the event with index i occurs, follows the Multinomial distribution

[
n Xn

F(X1, ey X5 D1, v P1) = 7x1!'_:x”!pf1...pn .

Where parameters py, ..., pn represent the occurrence probability of the respective outcome.

0.6.6 Gaussian Distribution

A very important theorem in probability theory is the Central Limit Theorem. The Central Limit Theorem
states that, under very general conditions, if we sum a very large number of mutually independent random
variables, then the distribution of the sum can be closely approximated by a certain specific continuous density
called the normal (or Gaussian) density. The normal density function with parameters u and o is defined as
follows:

fX(x) — Le_(x_y)z/zazr —00 < x < o0,

-4 -2
Figure 1: Normal density for two sets of parameter values.

Figure [I] compares a plot of normal density for the cases y =0and ¢ =1,and y = 0and ¢ = 2.

0.6.7 Maximum Likelihood Estimation

Until now we assumed that, for every distribution, the parameters 0 are known and are used when we calculate
p(x]0). There are some cases where the values of the parameters are easy to infer, such as the probability p of
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getting a head using a fair coin, used on a Bernoulli or Binomial distribution. However, in many problems,
these values are complex to define and it is more viable to estimate the parameters using the data x. For
instance, in the example above with the coin toss, if the coin is somehow tampered to have a biased behavior,
rather than examining the dynamics or the structure of the coin to infer a parameter for p, a person could
simply throw the coin n times, count the number of heads / and set p = % By doing so, the person is using
the data x to estimate 6.

With this in mind, we will now generalize this process by defining the probability p(6|x) as the probability
of the parameter 6, given the data x. This probability is called likelihood £ (6|x) and measures how well the

parameter § models the data x. The likelihood can be defined in terms of the distribution f as

£(Olx1, ) x) = ﬁf<xi|e>

where x4, ..., X, are independently and identically distributed (i.i.d.) samples.

To understand this concept better, we go back to the tampered coin example again. Suppose that we throw
the coin 5 times and get the sequence [1,1,1,1,1] (1=head, O=tail). Using the Bernoulli distribution (see Sec-
tion[0.6.2) f to model this problem, we get the following likelihood values:

e £(0,x) = f(1,0°=0°=0

e £(0.2,x) = £(1,0.2)°> = 0.2° = 0.00032
e £(0.4,x) = f(1,0.4)% = 0.4° = 0.01024
e £(0.6,x) = f(1,0.6)°> = 0.6° = 0.07776
e £(0.8,x) = £(1,0.8)° = 0.8° = 0.32768
e L(1,x)=f(1,1)°=1°=1

If we get the sequence [1,0,1,1,0] instead, the likelihood values would be:

£(0,x) = f(1,0)°£(0,0)* = 0° x 1> = 0
e £(0.2,x) = £(1,0.2)3£(0,0.2)> = 0.23 x 0.82 = 0.00512
o £(0.4,x) = f(1,0.4)3£(0,0.4)% = 0.4% x 0.6> = 0.02304
e £(0.6,x) = £(1,0.6)3£(0,0.6)% = 0.6> x 0.4> = 0.03456
e £(0.8,x) = f(1,0.8)%£(0,0.8)% = 0.8% x 0.22 = 0.02048
e £(1,x)=f(1,1)°=13x0>=0

We can see that the likelihood is the highest when the distribution f with parameter p is the best fit for
the observed samples. Thus, the best estimate for p according to x would be the value for which £(p|x) is the
highest.

The value of the parameter 6 with the highest likelihood is called maximum likelihood estimate (MLE)
and is defined as

0,110 = argmaxgL(0|x)

Finding this for our example is relatively easy, since we can simply derivate the likelihood function to find
the absolute maximum. For the sequence [1,0,1,1,0], the likelihood would be given as

L(plx) = f(Lp)°f(0,p)* = p°(1 - p)?
And the MLE estimate would be given by:

oL (p|x)
op

:O,

which resolves to
Pmie = 0.6
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Exercise 0.10 Ouer the next couple of exercises we will make use of the Galton dataset, a dataset of heights of fathers
and sons from the 1877 paper that first discussed the “regression to the mean” phenomenon. This dataset has 928 pairs
of numbers.

o Usethe 1oad () function in the galton. py file to load the dataset. The file is located under the 1xmls/readers
folderﬂ Type the following in your Python interpreter:

import galton as galton
galton_data = galton.load()

* What are the mean height and standard deviation of all the people in the sample? What is the mean height of the
fathers and of the sons?

e Plot a histogram of all the heights (you might want to use the p1t.hist function and the ravel method on
arrays).

* Plot the height of the father versus the height of the son.

® You should notice that there are several points that are exactly the same (e.g., there are 21 pairs with the values 68.5
and 70.2). Use the ? command in ipython to read the documentation for the numpy . random. randn function
and add random jitter (i.e., move the point a little bit) to the points before displaying them. Does your impression
of the data change?

0.6.8 Conjugate Priors

Definition 0.6 let ¥ = {fx(x|s),s € X} be a class of likelihood functions; let P be a class of probability (density or
mass) functions; if, for any x, any ps(s) € P, and any fx(x|s) € F, the resulting a posteriori probability function
ps(s|x) = fx(x|s)ps(s) is still in P, then P is called a conjugate family, or a family of conjugate priors, for F.

0.7 Numerical optimization

Most problems in machine learning require minimization/maximization of functions (likelihoods, risk, energy,
entropy, etc.,). Let x* be the value of x which minimizes the value of some function f(x). Mathematically, this
is written as

x* = argmin f(x)
X

In a few special cases, we can solve this minimization problem analytically in closed form (solving for
optimal x* in V,f(x*) = 0), but in most cases it is too cumbersome (or impossible) to solve these equations
analytically, and they must be tackled numerically. In this section we will cover some basic notions of numer-
ical optimization. The goal is to provide the intuitions behind the methods that will be used in the rest of the
school. There are plenty of good textbooks in the subject that you can consult for more information (Nocedal
and Wright, 1999; Bertsekas et al.,[1995; Boyd and Vandenberghe, 2004).

The most common way to solve the problems when no closed form solution is available is to resort to an
iterative algorithm. In this Section, we will see some of these iterative optimization techniques. These iterative
algorithms construct a sequence of points x(?), x(1), ... € domain(f) such that hopefully x' = x* after a number
of iterations. Such a sequence is called the minimizing sequence for the problem.

0.7.1 Convex Functions

One important property of a function f(x) is whether it is a convex function (in the shape of a bowl) or a
non-convex function. Figures [2] and [3] show an example of a convex and a non-convex function. Convex
functions are particularly useful since you can guarantee that the minimizing sequence converges to the true
global minimum of the function, while in non-convex functions you can only guarantee that it will reach a
local minimum.

Intuitively, imagine dropping a ball on either side of Figure [2} the ball will roll to the bottom of the bowl
independently from where it is dropped. This is the main benefit of a convex function. On the other hand, if

"You might need to inform python about the location of the Ixmls labs toolkit. To do so you need to import sys and use the
sys.path.append function to add the path to the toolkit readers.
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Figure 2: Illustration of a convex function. The line segment between any two points on the graph lies entirely
above the curve.
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Figure 3: Illustration of a non-convex function. Note the line segment intersecting the curve.

you drop a ball from the left side of Figure [3|it will reach a different position than if you drop a ball from its
right side. Moreover, dropping it from the left side will lead you to a much better (i.e., lower) place than if you

drop the ball from the right side. This is the main problem with non-convex functions: there are no guarantees
about the quality of the local minimum you find.

More formally, some concepts to understand about convex functions are:
A line segment between points x1 and xp: contains all points such that

x=0x14+ (1-0)x,
where 0 < 6 < 1.

A convex set contains the line segment between any two points in the set
x,%€C, 0<60<1 = 0Oxy+(1-0)xeC.
A function f : R" — R is a convex function if the domain of f is a convex set and

f(Ox+(1-0)y) <6f(x)+(1—-06)f(y)
forallx,y e R",0<6 <1

0.7.2 Derivative and Gradient

The derivative of a function is a measure of how the function varies with its input variables. Given an interval

[a,b] one can compute how the function varies within that interval by calculating the average slope of the
function in that interval:
f(b) — f(a)

b—a (6)
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The derivative can be seen as the limit as the interval goes to zero, and it gives us the slope of the function at

that point.
Of _ o flxth) = f(x)
ox  h=0 h

@)

Table|3|shows derivatives of some functions that we will be using during the school.

Function f(x) | Derivative %
x? 2x

x" nx" 1

log(x) T

exp(x) exp(x)
T T

X xz

Table 3: Some derivative examples

An important rule of derivation is the chain rule. Consider & = f o g, and u = g(x), then:

oh _df g
o ou ax ®)

Example 0.3 Consider the function h(x) = (x2), this can be decomposed as h(x) = f(g(x)) = f(u) = exp(u),
.9

u

exp
= % 9 — exp(u) - 2x = exp(x?) - 2x

where u = g(x) = x? and has derivative %

Exercise 0.11 Consider the function f(x) = x? and its derivative %. Look at the derivative of that function at points [-
2,0,2], draw the tangent to the graph in that point % (—=2) =—4 % (0) =0, and % (2) = 4. For example, the tangent
equation for x = —2isy = —4x — b, where b = f(—2). The following code plots the function and the derivatives on

those points using matplotlib (See Figure[d).

a = np.arange(-5,5,0.01)
f x = np.power (a,Z2)
plt.plot (a, f_x)

plt.xlim(-5,5)
plt.ylim(-5,15)

k= np.array([-2,0,2])
plt.plot (k, k**2, "bo")

1 k:

plt.plot (a, (2*1i)+*a - (i*%*2))

The gradient of a function is a generalization of the derivative concept we just saw before for several
dimensions. Let us assume we have a function f(x) where x € IR?, so x can be seen as a pair x = [x1, x2]. Then,

of ofy

the gradient measures the slope of the function in both directions: Vyf(x) = [E, I

0.7.3 Gradient Based Methods

Gradient based methods are probably the most common methods used for finding the minimizing sequence
for a given function. The methods used in this class will make use of the function value f(x) : R” — R as well
as the gradient of the function Vf(x). The simplest method is the Gradient descent method, an unconstrained
first-order optimization algorithm.

The intuition of this method is as follows: You start at a given point xg and compute the gradient at that
point Vy, f(x). You then take a step of length 7 on the direction of the negative gradient to find a new point:
X1 = X9 — )V, f(x). Then, you compute the gradient at this new point, Vy, f(x), and take a step of length 1
on the direction of the negative gradient to find a new point: x, = x; — 17V, f(x). You proceed until you have
reached a minimum (local or global). Recall from the previous subsection that you can identify the minimum
by testing if the norm of the gradient is zero: ||V f(x)|| = 0.

22



15

101

Figure 4: Tllustration of the gradient of the function f(x?) at three different points x = [—2,0,2]. Note that at
point x = 0 the gradient is zero which corresponds to the minimum of the function.

There are several practical concerns even with this basic algorithm to ensure both that the algorithm con-

verges (reaches the minimum) and that it does so in a fast way (by fast we mean the number of function and
gradient evaluations).

* Step Size 17 A first question is how to find the step length 7. One condition is that eta should guarantee

sufficient decrease in the function value. We will not cover these methods here but the most common
ones are Backtracking line search or the Wolf Line Search (Nocedal and Wright, [1999).

* Descent Direction A second problem is that using the negative gradient as direction can lead to a very

slow convergence. Different methods that change the descent direction by multiplying the gradient by
a matrix B have been proposed that guarantee a faster convergence. Two notable methods are the Con-
jugate Gradient (CG) and the Limited Memory Quasi Newton methods (LBFGS) (Nocedal and Wright,
1999).

* Stopping Criteria Finally, it will normally not be possible to reach full convergence either because it will

be too slow, or because of numerical issues (computers cannot perform exact arithmetic). So normally
we need to define a stopping criteria for the algorithm. Three common criteria (that are normally used
together) are: a maximum number of iterations; the gradient norm be smaller than a given threshold
[IVf(x)|| < 1, or the normalized difference in the function value be smaller than a given threshold

F )~ F )
maxLF O a1 = 12

Algorithm [I| shows the general gradient based algorithm. Note that for the simple gradient descent algo-

rithm B is the identity matrix and the descent direction is just the negative gradient of the function.

Algorithm 1 Gradient Descent

1:
2:
3:

4
5
6:
7:

given a starting point xp,7 = 0
repeat
Compute step size 7
Compute descent direction —BV f(x;).
Xi11 < X — 1BV f(x;)
i i+1
until stopping criterion is satisfied.

Exercise 0.12 Consider the function f(x) = (x 4+ 2)? — 16exp (—(x —2)2). Make a function that computes the
function value given x.
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Figure 5: Illustration of gradient descent. The blue circles correspond to contours of the function (each blue
circle is a set of points which have the same function value), while the red lines correspond to steps taken in
the negative gradient direction.

get_y(x):

(x+2) #%2 — 16+np.exp (—((x-2) *x*2))

Draw a plot around x € [—8,8].

X = np.arange (-8, 8, 0.001)
y = get_y(x)

plt.plot(x, y)

plt.show()

Calculate the derivative of the function f(x), implement the function get_grad(x).

get_grad (x) :

(24x+4) =16+ (=2+x + 4)*np.exp(—((x=2) ++2))

Use the method gradient_descent to find the minimum of this function. Convince yourself that the code is doing the
proper thing. Look at the constants we defined. Note, that we are using a simple approach to pick the step size (always
have the value step_size) which is not necessarily correct.

gradient_descent_scalar(start_x, func, grad, step_size=0.1, prec=0.0001):
max_iter=100
X_new = start_x
res = []
1 range (max_iter) :
x _old = x_new
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# Use negative step size for gradient descent
x_new = x_old - step_size x grad(x_new)

f x_new = func(x_new)

f x old = func(x_old)

res.append ([x_new, f_x_new])

(abs (f_x_new - f_x_old) < prec):
("change in function values too small, leaving")
np.array(res)
("exceeded maximum number of iterations, leaving")

np.array(res)

Run the gradient descent algorithm starting from xo = —8 and plot the minimizing sequence.

X = np.arange (-8, 8, 0.001)
y = get_y(x)
plt.plot(x, y)

x 0 = -8

res = gradient_descent_scalar (x_0, get_y, get_grad)
plt.plot (res[:,0], res[:,1], 'r+'")

plt.show()

100 T T T T T T T

60 1

a0} |

-20 ! | | |

Figure 6: Example of running gradient descent starting on point xy = —8 for function f(x) = (x +2)? —
16 exp (—(x —2)?). The function is represented in blue, while the points of the minimizing sequence are dis-
played as green plus signs.
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Figure[6|shows the resulting minimizing sequence. Note that the algorithm converged to a minimum, but since the
function is not convex it converged only to a local minimum.
Now try the same exercise starting from the initial point xy = 8.

X = np.arange (-8, 8, 0.001)
y = get_y(x)
plt.plot(x, y)

x 0 = 8

res = gradient_descent_scalar(x_0, get_y, get_grad)
plt.plot (res([:,0], res[:,1], 'r+'")

plt.show()
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Figure 7: Example of running gradient descent starting on point xp = 8 for function f(x) = (x +2)? —
16 exp (—(x —2)?). The function is represented in blue, while the points of the minimizing sequence are dis-
played as green plus signs.

Figure[/|shows the resulting minimizing sequence. Note that now the algorithm converged to the global minimum.
Howeuver, note that to get to the global minimum the sequence of points jumped from one side of the minimum to the other.
This is a consequence of using a wrong step size (in this case too large). Repeat the previous exercise changing both the
values of the step-size and the precision. What do you observe?

During this school we will rely on the numerical optimization methods provided by Scipy (scientific com-
puting library in python), which are very efficient implementations.
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0.8 Python Exercises

0.8.1 Numpy and Matplotlib

Exercise 0.13 Consider the linear regression problem (ordinary least squares) on the Galton dataset, with a single re-
sponse variable

y:xTuH-s

The linear regression problem is, given a set {y())}; of samples of y and the corresponding x¥) vectors, estimate w
to minimise the sum of the e variables. Traditionally this is solved analytically to obtain a closed form solution (although
this is not the way in which it should be computed in this exercise, linear algebra packages have an optimised solver,
with numpy, use numpy.linalg.lstsq).

Alternatively, we can define the error function for each possible w:

e(w) =Y (x(i)Tw -y)

i

2

1. Derive the gradient of the error aaTg;]-'
2. Implement a solver based on this for two dimensional problems (i.e., w € R?).

3. Use this method on the Galton dataset from the previous exercise to estimate the relationship between father and
son’s height. Try two formulas
s = fwl + 1y (9)

where s is the son’s height, and f is the father heights; and
s = fwy; + 1wy +¢ (10)
where the input variable is now two dimensional: (f,1). This allows the intercept to be non-zero.
4. Plot the regression line you obtain with the points from the previous exercise.

5. Usethe np.linalg. 1stsq function and compare to your solution.

Please refer to the notebook for solutions.

0.8.2 Debugging

Exercise 0.14 Use the debugger to debug the buggy . py script which attempts to repeatedly perform the following
computation:

1. Start xo =0
2. Iterate

(a) x; =Xt where r is a random variable.
(b) if x;, , >= 1., then stop.
(c) ifxi y <=0, then x; 1 =0

(d) else xp11 = X} 4.
3. Return the number of iterations.

Having repeated this computation a number of times, the programme prints the average. Unfortunately, the program
has a few bugs, which you need to fix.
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Day 1
Linear Classifiers

This day will serve as an introduction to machine learning. We will recall some fundamental concepts about
decision theory and classification, present some widely used models and algorithms and try to provide the
main motivation behind them. There are several textbooks that provide a thorough description of some of
the concepts introduced here: for example, Mitchell (1997), Duda et al.| (2001), Scholkopf and Smola| (2002),
Joachims| (2002), Bishop| (2006), Manning et al.| (2008), to name just a few. The concepts that we introduce in
this chapter will be revisited in later chapters and expanded to account for non-linear models and structured
inputs and outputs. For now, we will concern ourselves only with multi-class classification (with just a few
classes) and linear classifiers.

Today’s assignment

The assignment of today’s class is to implement a classifier called Naive Bayes, and use it to perform sentiment
analysis on a corpus of book reviews from Amazon.

1.1 Notation

In what follows, we denote by X our input set (also called observation set) and by Y our output set. We will make
no assumptions about the set X, which can be continuous or discrete. In this lecture, we consider classification
problems, where Y = {cy, ..., ck} is a finite set, consisting of K classes (also called labels). For example, X can be
a set of documents in natural language, and Y a set of topics, the goal being to assign a topic to each document.

We use upper-case letters for denoting random variables, and lower-case letters for value assignments to
those variables: for example,

¢ X is a random variable taking values on X,
* Y is a random variable taking values on Y,
* x € Xand y € Y are particular values for X and Y.

We consider events such as X = x, Y = y, etc.

For simplicity reasons, throughout this lecture we will use modified notation and let P(y) denote the prob-
ability associated with the event Y = y (instead of Py(Y = y)). Also, joint and conditional probabilities are
denoted as P(x,y) £ Pxy(X = xAY =y) and P(x|y) £ Pxy(X = x | Y = y), respectively. From the laws of
probabilities:

P(x,y) = P(ylx)P(x) = P(x]y)P(y), (11

forallx e Xandy € Y.

Quantities that are predicted or estimated from the data will be appended a hat-symbol: for example,
estimations of the probabilities above are denoted as P(y), P(x,y) and P(y|x); and a prediction of an output
will be denoted 7.

We assume that a training dataset D is provided which consists of M input-output pairs (called examples or
instances):

D={LyY),..., My} Ccaxy. (1.2)
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The goal of (supervised) machine learning is to use the training dataset D to learn a function / (called a
classifier) that maps from X to Y: this way, given a new instance x € X (test example), the machine makes a
prediction § by evaluating / on x, i.e., § = h(x).

1.2 Generative Classifiers: Naive Bayes
If we knew the true distribution P(X, Y), the best possible classifier (called Bayes optimal) would be one which

predicts according to

7 = argmaxP(y|x
9 gma (ylx)

= arg max
BN P(x)

=" argmaxP
gma (xy)

= argmaxP(y)P(x|y), (1.3)
yey

where in t we used the fact that P(x) is constant with respect to y.

Generative classifiers try to estimate the probability distributions P(Y) and P(X|Y), which are respectively
called the class prior and the class conditionals. They assume that the data are generated according to the follow-
ing generative story (independently foreachm =1,..., M):

1. A class ym ~ P(Y) is drawn from the class prior distribution;
2. Aninput x,; ~ P(X|Y = yy,) is drawn from the corresponding class conditional.

Figure [1.T|shows an example of the Bayes optimal decision boundary for a toy example with K = 2 classes,
M = 100 points, class priors P(y1) = P(y2) = 0.5, and class conditionals P(x|y;) given by 2-D Gaussian
distributions with the same variance but different means.

1.2.1 Training and Inference

Training a generative model amounts to estimating the probabilities P(Y) and P(X|Y) using the dataset D,
yielding estimates P(y) and P(x|y). This estimation is usually called training or learning.

After we are done training, we are given a new input x € X, and we want to make a prediction according
to

7 = argmaxP(y)P(x|y), (1.4)
yeyY

using the estimated probabilities. This is usually called inference or decoding.
We are left with two important problems:

1. How should the distributions P(Y) and P(X|Y) be “defined”? (i.e., what kind of independence assump-
tions should they state, or how should they factor?)

2. How should parameters be estimated from the training data D?

The first problem strongly depends on the application at hand. Quite often, there is a natural decomposition
of the input variable X into ] components,

X =(X,..., X)) (1.5)

The naive Bayes method makes the following assumption: Xj, ..., X} are conditionally independent given the
class. Mathematically, this means that

J

P(X|Y) = JIPXY). (1.6)
j=1
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Simple Data Set -- Meanl= (-1.00,-1.00) Varl = 0.50 Mean2= (1.00,1.00) Var2= 0.50
Nr. Points=100.00, Balance=0.50 Train-Dev-Test (0.80,.0.00,0.20)
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Figure 1.1: Example of a dataset together with the corresponding Bayes optimal decision boundary. The
input set consists in points in the real plane, X = R, and the output set consists of two classes (Red and Blue).
Training points are represented as squares, while test points are represented as circles.

Note that this independence assumption greatly reduces the number of parameters to be estimated (degrees of
freedom) from O(exp(])) to O(J), hence estimation of P(X|Y) becomes much simpler, as we shall see. It also
makes the overall computation much more efficient for large | and it decreases the risk of overfitting the data.
On the other hand, if the assumption is over-simplistic it may increase the risk of under-fitting.

For the second problem, one of the simplest ways to solve it is using maximum likelihood estimation, which
aims to maximize the probability of the training sample, assuming that each point was generated indepen-
dently. This probability (call it P(D)) factorizes as

P(D) = P(x™, y™)

SSifemE

J
= TTPu"TIPGEly™). (1.7)
m=1 j=1

1.2.2 Example: Multinomial Naive Bayes for Document Classification

We now consider a more realistic scenario where the naive Bayes classifier may be applied. Suppose that the
task is document classification: X is the set of all possible documents, and Y = {y1,...,yx} is a set of classes for
those documents. Let V = {wq, ..., w ]} be the vocabulary, i.e., the set of words that occur in some document.
A very popular document representation is through a “bag-of-words”: each document is seen as a collec-
tion of words along with their frequencies; word ordering is ignored. We are going to see that this is equivalent
to a naive Bayes assumption with the multinomial model. We associate to each class a multinomial distribution,
which ignores word ordering, but takes into consideration the frequency with which each word appears in a
document. For simplicity, we assume that all documents have the same length LEI Each document x is as-

1We can get rid of this assumption by defining a distribution on the document length. Everything stays the same if that distribution is
uniform up to a maximum document length.
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sumed to have been generated as follows. First, a class y is generated according to P(y). Then, x is generated
by sequentially picking words from V with replacement. Each word wj is picked with probability P(w;|y). For
example, the probability of generating a document x = wj, ... w;, (i.e., a sequence of L words wj,,...,w;, ) is

L i
(xly) = [ TP(wjly) = [T P(wjly)" (1.8)
=1 j=1

where n ]-(x) is the number of occurrences of word w; in document x.

Hence, the assumption is that word occurrences (tokens) are independent given the class. The parameters
that need to be estimated are P(y;), ..., P(yk), and p(w]| ye)forj=1,...,Jand k =1,...,K. Given a training
sample D = {(x',y!),..., (xM,yM)}, denote by Iy the indices of those instances belonglng to the kth class. The
maximum likelihood estimates of the quantities above are:

5 |9

Plye) = B B ) Yomeg, 1j(x™)

YL Toeg, mi(xm)’

In words: the class priors’ estimates are their relative frequencies (as before), and the class-conditional word
probabilities are the relative frequencies of those words across documents with that class.

(1.9)

1.3 Assignment
With the previous theoretical background, you will be able to solve today’s assignment.

Exercise 1.1 In this exercise we will use the Amazon sentiment analysis data (Blitzer et al.,|2007), where the goal is to
classify text documents as expressing a positive or negative sentiment (i.e., a classification problem with two classes).
We are going to focus on book reviews. To load the data, type:

lxmls.readers.sentiment_reader sSrs

scr = srs.SentimentCorpus ("books")

This will load the data in a bag-of-words representation where rare words (occurring less than 5 times in the training
data) are removed.

1. Implement the Naive Bayes algorithm. Open the file multinomial_naive_bayes.py, which is inside the
classifiers folder. In the MultinomialNaiveBayes class you will find the train method. We have
already placed some code in that file to help you get started.

2. After implementing, run Natve Bayes with the multinomial model on the Amazon dataset (sentiment classification)
and report results both for training and testing:

Ixmls.classifiers.multinomial_ naive_bayes mnbb

mnb = mnbb.MultinomialNaiveBayes ()

params_nb_sc = mnb.train(scr.train_X,scr.train_y)
y_pred_train = mnb.test (scr.train_X,params_nb_sc)
acc_train = mnb.evaluate (scr.train_y, y_pred_train)
y_pred_test = mnb.test (scr.test_X,params_nb_sc)
acc_test = mnb.evaluate (scr.test_y, y_pred_test)

("Multinomial Naive Bayes Amazon Sentiment Accuracy train: $f test: $£"%$(
acc_train,acc_test))

3. Observe that words that were not observed at training time cause problems at test time. Why? To solve this
problem, apply a simple add-one smoothing technique: replace the expression in Eq.|1.9|for the estimation of the
conditional probabilities by

1+ Zmejk nj(x”‘)

J+ X)) Toeg, ni(xm)’

P(wjler) =
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where [ is the number of distinct words.

This is a widely used smoothing strategqy which has a Bayesian interpretation: it corresponds to choosing a uniform
prior for the word distribution on both classes, and to replace the maximum likelihood criterion by a maximum a
posteriori approach. This is a form of regularization, preventing the model from overfitting on the training data.
See e.g. Manning and Schiitze (1999); Manning et al.| (2008) for more information. Report the new accuracies.

1.4 Discriminative Classifiers

In the previous sections we discussed generative classifiers, which require us to model the class prior and class
conditional distributions (P(Y) and P(X|Y), respectively). Recall, however, that a classifier is any function
which maps objects x € X onto classes y € Y. While it’s often useful to model how the data was generated, it’s
not required. Classifiers that do not model these distributions are called discriminative classifiers.

1.4.1 Features

For the purpose of understanding discriminative classifiers, it is useful to think about each x € X as an abstract
object which is subject to a set of descriptions or measurements, which are called features. A feature is simply a
real number that describes the value of some property of x. For example, in the previous section, the features
of a document were the number of times each word w; appeared in it.

Let g1(x),...,8j(x) be J features of x. We call the vector

8(x) = (g1(x),.-.,87(x)) (1.10)

a feature vector representation of x. The map g : X — R/ is called a feature mapping.
In NLP applications, features are often binary-valued and result from evaluating propositions such as:

a 1, if sentence x contains the word Ronaldo

gi(x) = { 0, otherwise. (1.11)
a 1, if all words in sentence x are capitalized

g2(%) = { 0, otherwise. (1.12)
A 1, if x contains any of the words amazing, excellent or :-)

83(x) = { 0, otherwise. (1.13)

In this example, the feature vector representation of the sentence "Ronaldo shoots and scores an amazing
goal!” would be g(x) = (1,0,1).

In multi-class learning problems, rather than associating features only with the input objects, it is useful
to consider joint feature mappings f : X x Y — RP. In that case, the joint feature vector f(x,y) can be seen as a
collection of joint input-output measurements. For example:

A 1, if x contains Ronaldo, and topic y is sport
hlxy) = { 0, otherwise. (1.14)
A 1, if x contains Ronaldo, and topic y is politics
hlxy) = { 0, otherwise. (1.15)
A very simple form of defining a joint feature mapping which is often employed is via:
flry) = gl)@ey
= (0,...,0, g(x),0,...,0) (1.16)
A d
yth slot

where g(x) € R/ is a input feature vector, ® is the Kronecker product ([a ® b] ij = a;ibj) and e, € RK, with
[ey]c = 1iff y = ¢, and 0 otherwise. Hence f(x,y) € R/*K.
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1.4.2 Inference

Linear classifiers are very popular in natural language processing applications. They make their decision based
on the rule:

7 =argmaxw - f(x,y). (1.17)
yeY
where
o w € RP is a weight vector;
e f(x,y) € RP is a feature vector;
o w-f(x,y) = L2 wyfs(x,y) is the inner product between w and f(x,y).

Hence, each feature f;(x,y) has a weight w,; and, for each class y € Y, a score is computed by linearly combin-
ing all the weighted features. All these scores are compared, and a prediction is made by choosing the class
with the largest score.

Remark 1.1 With the design above (Eq. , and decomposing the weight vector as w = (we,, . .., We, ), we have that
w- flx,y) = w, - g(x). (118)

In words: each class y € Y gets its own weight vector wy, and one defines a input feature vector g(x) that only looks at
the input x € X. This representation is very useful when features only depend on input x since it allows a more compact
representation. Note that the number of features is normally very large.

Remark 1.2 The multinomial naive Bayes classifier described in the previous section is an instance of a linear classifier.
Recall that the naive Bayes classifier predicts according to j = arg maxyey P(y)P(x|y). Taking logs, in the multinomial
model for document classification this is equivalent to:

7 = argmaxlogp(y)+log15(x|y)

y€d
A ] A

= argmaxlog P(y) + ) n;(x)log P(w;ly)

yeyY j=1
_ - e(x), 1.19

argryneag(wy g(x) (1.19)
where

wy = (by,logP(wily),..., logP(wly))
by = logP(y)
g(x) = (Lni(x),...,n5(x)). (1.20)

Hence, the multinomial model yields a prediction rule of the form

g = . . 1.21
7 argryneag( wy - g(x) (1.21)

1.4.3 Online Discriminative Algorithms

We now discuss two discriminative classification algorithms. These two algorithms are called online (or stochas-
tic) algorithms because they only process one data point (in our example, one document) at a time. Algorithms
which look at the whole dataset at once are called offline, or batch algorithms, and will be discussed later.

Perceptron

The perceptron (Rosenblatt, [1958) is perhaps the oldest algorithm used to train a linear classifier. The perceptron
works as follows: at each round, it takes an element x from the dataset, and uses the current model to make
a prediction. If the prediction is correct, nothing happens. Otherwise, the model is corrected by adding the
feature vector w.r.t. the correct output and subtracting the feature vector w.r.t. the predicted (wrong) output.
Then, it proceeds to the next round.
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Algorithm 2 Averaged perceptron

1: input: dataset D, number of rounds R
2: initialize t = 0,w' =0

3: forr =1to R do

4. Dy = shuffle(D)

5. fori=1toMdo

6 m = Ds(i)

7 take training pair (¥, y") and predict using the current model:

7 < argmaxw' - f(x™,y')

y'ey
8: update the model: w!*! «+ w' + f(x™,y™) — f(x™, 1)
9: t=t+1
10:  end for
11: end for

12: output: the averaged model @ < 1 ¥!_, w'

Alg.[2|shows the pseudo-code of the perceptron algorithm. As it can be seen, it is remarkably simple; yet it
often reaches a very good performance, often better than the Naive Bayes, and usually not much worse than
maximum entropy models or SVMs (which will be described in the following section). EI

A weight vector w defines a separating hyperplane if it classifies all the training data correctly, i.e., if y"* =
argmax, cy w- f(x™,y)hold form =1,..., M. A dataset D is separable if such a weight vector exists (in general,
w is not unique). A very important property of the perceptron algorithm is the following: if D is separable,
then the number of mistakes made by the perceptron algorithm until it finds a separating hyperplane is finite.
This means that if the data are separable, the perceptron will eventually find a separating hyperplane w.

There are other variants of the perceptron (e.g., with regularization) which we omit for brevity.

Exercise 1.2 We provide an implementation of the perceptron algorithm in the class Perceptron (fileperceptron.py).

1. Run the following commands to generate a simple dataset similar to the one plotted on Figure[L.T}

Ixmls.readers.simple_data_set sds
= sds.SimpleDataSet (nr_examples=100, gl = [[-1,-1],1], 92 = [[1,1],1], balance=0.

5, split=[0.5,0,0.5])

2. Run the perceptron algorithm on the simple dataset previously generated and report its train and test set accuracy:

lxmls.classifiers.perceptron percc

perc = percc.Perceptron()
params_perc_sd = perc.train(sd.train_X,sd.train_y)
y_pred_train = perc.test (sd.train_X, params_perc_sd)
acc_train = perc.evaluate (sd.train_y, y_pred_train)
y_pred_test = perc.test (sd.test_X,params_perc_sd)
acc_test = perc.evaluate(sd.test_y, y_pred_test)
("Perceptron Simple Dataset Accuracy train: %f test: 2f"%(acc_train,acc_test))

3. Plot the decision boundary found:

fig,axis = sd.plot_data()

fig,axis = sd.add _line(fig,axis,params_perc_sd, "Perceptron”, "blue")

Change the code to save the intermediate weight vectors, and plot the decision boundaries every five iterations.
What do you observe?

4. Run the perceptron algorithm on the Amazon dataset.

2 Actually, we are showing a more robust variant of the perceptron, which averages the weight vector as a post-processing step.
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Algorithm 3 MIRA

1: input: dataset D, parameter A, number of rounds R
2: initialize t = 0, w' = 0

3: forr =1to R do

4: Dy = shuffle(D)

5. fori=1toMdo

6 m = Dy (i)

7: t=t+1

8 take training pair (x”,y") and predict using the current model:

7 < argmaxw' - f(x™,y')
y'ey

9: compute loss: £ = w' - f(x™,9) — w' - £(x",y™) + p(§,y™)
ot

" Lf Gy —f () |12

11: update the model: w'*! <+ w' + ! (f(x™,y™) — f(x™, 7))

122 end for

13: end for

14: output: the averaged model @ < % Y w

10: compute stepsize: 77! = min {A‘l

Margin Infused Relaxed Algorithm (MIRA)

The MIRA algorithm (Crammer and Singer, [2002; |Crammer et al., 2006) has achieved very good performance
in NLP problems. Recall that the Perceptron takes an input pattern and, if its prediction is wrong, adds the
quantity [f(x™,y™) — f(x™,7)] to the weight vector. MIRA changes this by adding #'[f(x™,y™) — f(x™,7)] to
the weight vector. The difference is the step size ', which depends on the iteration ¢.

There is a theoretical basis for this algorithm, which we now briefly explain. At each round t, MIRA updates
the weight vector by solving the following optimization problem:

w'™! < argmin &+ 5w — wt|? (1.22)
w,G

st. w-f(x"y")>w- f(x",9)+1-¢ (1.23)

¢=>0, (1.24)

where j = argmax,, w' - f(x™,y') is the prediction using the model with weight vector w'. By inspecting
Eq. we see that MIRA attempts to achieve a tradeoff between conservativeness (penalizing large changes
from the previous weight vector via the term %Hw — w'||?) and correctness (by requiring, through the con-
straints, that the new model w'*! “separates” the true output from the prediction with a margin (although
slack § > 0is allowed)ﬂ Note that, if the prediction is correct (§ = y™) the solution of the problem Eq.
leaves ﬂ‘g weight vector unchanged (w'*! = w'). This quadratic programming problem has a closed form
solution

w — wh +pf (F(My™) — F(X™,9)),
with

t. m 5\ _ ot m ,,m A M
y = min {Al’ w - flx /y)m w flx 2 ) +2p<1/,1/ ) }
LF (e, ym) = f(xm, gl
where p : Y x Y — R4 is a non-negative cost function, such that p(7,y) is the cost incurred by predicting 7
when the true output is y; we assume p(y,y) = 0 for all y € Y. For simplicity, we focus here on the 0/1-cost
(but keep in mind that other cost functions are possible):

0(9,y) ={ L g7y (1.25)

0 otherwise.

MIRA is depicted in Alg.[3} For other variants of MIRA, see Crammer et al.|(2006).

Exercise 1.3 We provide an implementation of the MIRA algorithm. Compare it with the perceptron for various values

3The intuition for this large margin separation is the same for support vector machines, which will be discussed in §1.4.4
“Note that the perceptron updates are identical, except that we always have 7; = 1.
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of A

Ixmls.classifiers.mira mirac
mira = mirac.Mira/()
mira.regularizer = 1.0 # This 1is lambda

params_mira_sd = mira.train(sd.train X,sd.train_y)
y_pred_train = mira.test (sd.train_X,params_mira_sd)
acc_train = mira.evaluate (sd.train y, y_pred_train)
y_pred_test = mira.test (sd.test_X,params_mira_sd)
acc_test = mira.evaluate(sd.test_y, y_pred_test)
("Mira Simple Dataset Accuracy train: %f test: %$f"$%$(acc_train,acc_test))
fig,axis = sd.add _line(fig,axis,params_mira_sd, "Mira", "green")

params_mira_sc = mira.train(scr.train X,scr.train_y)

y_pred_train = mira.test (scr.train_X,params_mira_sc)
acc_train = mira.evaluate(scr.train_y, y_pred_train)
y_pred_test = mira.test (scr.test_X,params_mira_sc)

acc_test = mira.evaluate(scr.test_y, y_pred _test)
("Mira Amazon Sentiment Accuracy train: %f test: $f"%(acc_train,acc_test))

Compare the results achieved and separating hyperplanes found.

1.4.4 Batch Discriminative Classifiers

As we have mentioned, the perceptron and MIRA algorithms are called online or stochastic because they look
at one data point at a time. We now describe two discriminative classifiers which look at all points at once;
these are called offline or batch algorithms.

Maximum Entropy Classifiers

The notion of entropy in the context of Information Theory (Shannon), [1948) is one of the most significant ad-
vances in mathematics in the twentieth century. The principle of maximum entropy (which appears under
different names, such as “maximum mutual information” or “minimum Kullback-Leibler divergence”) plays
a fundamental role in many methods in statistics and machine learning (Jaynes) |1982). E] The basic rationale
is that choosing the model with the highest entropy (subject to constraints that depend on the observed data)
corresponds to making the fewest possible assumptions regarding what was unobserved, making uncertainty
about the model as large as possible.

For example, if we throw a die and want to estimate the probability of its outcomes, the distribution with
the highest entropy would be the uniform distribution (each outcome having of probability a 1/6). Now
suppose that we are only told that outcomes {1, 2,3} occurred 10 times in total, and {4, 5,6} occurred 30 times
in total, then the principle of maximum entropy would lead us to estimate P(1) = P(2) = P(3) = 1/12 and
P(4) = P(5) = P(6) = 1/4 (i.e., outcomes would be uniform within each of the two groups)F_’-I

This example could be presented in a more formal way. Suppose that we want to use binary features to
represent the outcome of the die throw. We use two features: fip3(x,y) = 1if and only if y € {1,2,3}, and
fase(x,y) = 1if and only if y € {4,5,6}. Our observations state that in 40 throws, we observed f1p3 10 times
(25%) and fa56 30 times (75%). The maximum entropy principle states that we want to find the parameters
w of our model, and consequently the probability distribution Py, (Y|X), which makes fio3 have an expected
value of 0.25 and fy5¢ have an expected value of 0.75. These constraints, E[f123] = 0.25 and E|[fy56¢] = 0.75, are
known as first moment matching constmintsﬂ

An important fundamental result, which we will not prove here, is that the maximum entropy distribution
Py (Y|X) under first moment matching constraints is a log-linear model. EI It has the following parametric form:

Pulyl) = 22 L) (1.26

5For an excellent textbook on Information Theory, we recommend |Cover et al |(1991).

®For an introduction of maximum entropy models, along with pointers to the literature, see http: //www.cs.cmu.edu/~aberger/
maxent.html}

/In general, these constraints mean that feature expectations under that distribution 7 Y, Ey.p,, [f (¥, Y)] must match the observed
relative frequencies ﬁ Yo f (X, Ym)-

8 Also called a a Boltzmann distribution, or an exponential family of distributions.
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The denominator in Eq. is called the partition function:

Z(w,x) =Y exp(w- f(x,y)). (1.27)
y'ed

An important property of the partition function is that the gradient of its logarithm equals the feature expec-
tations:

VwlogZ(w,x) = Eu[f(x,Y)]
Y. Pu(y'|%)f(x, 1) (1.28)

y'ey
The average conditional log-likelihood is:

1
L(w; D) = —logPu(y!,...,yM|xt, ..., xM)

<

1

M
= lo H Py (y™ |x™)
m=1

aQ

log Puo (" x")
1

3
Il

I
= &I~ E
S

3
l.

M=

(w- f(x",y™) —log Z(w,x™)). (1.29)

We try to find the parameters w that maximize the log-likelihood £(w;D); to avoid overfitting, we add a
regularization term that penalizes values of w that have a high magnitude. The optimization problem becomes:

A
w = argmaxL(w;D)— = ||wl|?
w 2
= argmin—£(w; D) + %Hw”z (1.30)
w

Here we use the squared Ly-norm as the regularizerﬂ but other norms are possible. The scalar A > 0 controls
the amount of regularization. Unlike the naive Bayes examples, this optimization problem does not have
a closed form solution in general; hence we need to resort to numerical optimization (see section [0.7). Let
Fy(w; D) = —L(w; D) + % ||w]||? be the objective function in Eq. This function is convex, which implies
that a local optimum of Eq.[L.30]is also a global optimum. F) (w; D) is also differentiable: its gradient is

VwFy(w;D) = (—f(x™,y™) 4+ Vulog Z(w, x™)) + Aw

3
Il
—_

(—=f(xX",y™) + Ew[f(x™,Y)]) + Aw. (1.31)

=~ 2=
S

3
Il
-

Mz

A batch gradient method to optimize Eq. is shown in Alg. 8] Essentially, Alg. ] iterates through the
following updates until convergence:

w't —  w! — 5V (wh;D)
M
= (Al gy Y (FET) ~ Bl Y))). (1.32)

m=1

Convergence is ensured for suitable stepsizes 7;. Monotonic decrease of the objective value can also be ensured
if 17; is chosen with a suitable line search method, such as Armijo’s rule (Nocedal and Wright,1999). In practice,
more sophisticated methods exist for optimizing Eq. such as conjugate gradient or L-BFGS. The latter is
an example of a quasi-Newton method, which only requires gradient information, but uses past gradients to
try to construct second order (Hessian) approximations.

In large-scale problems (very large M) batch methods are slow. Online or stochastic optimization are at-

°In a Bayesian perspective, this corresponds to choosing independent Gaussian priors p(w;) ~ N(0;1/A2) for each dimension of the
weight vector.
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Algorithm 4 Batch Gradient Descent for Maximum Entropy

1: input: D, A, number of rounds T,
learning rate sequence (1¢);—1,..T

2: initialize w! = 0

3: fort =1to T do

4: form=1toMdo

5: take training pair (x”,y™) and compute conditional probabilities using the current model, for each
vevy:
my — P f(2"y))
ow(y |x ) - Z(w,xm)
6: compute the feature vector expectation:
Eolf(x™,Y)] = ) Pu(y'x")f(x", )
y'ey

7. end for
:  choose the stepsize 1; using, e.g., Armijo’s rule
9:  update the model:

M
Wt (1= Ag)w' + M Z_:l (f(x™,y™) = Ew[f(x",Y)])
10: end for

11: output: @ < w! !

tractive alternative methods. Stochastic gradient methods make “noisy” gradient updates by considering only
a single instance at the time. The resulting algorithm, called Stochastic Gradient Descent (SGD) is shown as
Alg. 5l At each round ¢, an instance m(t) is chosen, either randomly (stochastic variant) or by cycling through
the dataset (online variant). The stepsize sequence must decrease with t: typically, 77; = 1ot~ for some 19 > 0
and « € [1,2], tuned in a development partition or with cross-validation.

Exercise 1.4 We provide an implementation of the L-BFGS algorithm for training maximum entropy models in the class
MaxEnt batch, as well as an implementation of the SGD algorithm in the class MaxEnt _online.

1. Train a maximum entropy model using L-BFGS on the Simple data set (try different values of A). Compare the
results with the previous methods. Plot the decision boundary.

Ilxmls.classifiers.max_ent_batch mebc

me_lbfgs = mebc.MaxEntBatch ()
me_lbfgs.regularizer = 1.0
params_meb_sd = me_lbfgs.train(sd.train X,sd.train_y)
y_pred_train = me_lbfgs.test (sd.train_X, params_meb_sd)
acc_train = me_lbfgs.evaluate (sd.train y, y_pred train)
y_pred_test = me_lbfgs.test (sd.test_X, params_meb_sd)
acc_test = me_lbfgs.evaluate (sd.test_y, y_pred_test)
("Max-Ent batch Simple Dataset Accuracy train: $%$f test: $f"$(acc_train,acc_test

))

fig,axis = sd.add _line(fig,axis,params_meb_sd, "Max-Ent-Batch", "orange")

2. Train a maximum entropy model using L-BFGS, on the Amazon dataset (try different values of A) and report
training and test set accuracy. What do you observe?

params_meb_sc = me_lbfgs.train(scr.train X,scr.train_y)
y_pred_train = me_lbfgs.test (scr.train_X, params_meb_sc)
acc_train = me_lbfgs.evaluate(scr.train y, y_pred _train)
y_pred_test = me_lbfgs.test (scr.test_X,params_meb_sc)
acc_test = me_lbfgs.evaluate (scr.test_y, y_pred _test)
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Algorithm 5 SGD for Maximum Entropy

1: input: D, A, number of rounds T,
learning rate sequence (1¢);—1,..T
2: initialize w' = 0
3: fort =1to T do
4:  choose m = m(t) randomly
5 take training pair (x™,y™) and compute conditional probabilities using the current model, for each ' €

Pty ) = 2R LU

6.  compute the feature vector expectation:

Eolf(x",Y)] = }_ Py (y/|x") f (", y)

y'ey

7. update the model:
wth e (1= Ang)w' + e (F(2",y") — Ew[f (™, Y)])

8: end for

9: output: @ + w’! !

("Max—-Ent Batch Amazon Sentiment Accuracy train: %f test: $f"$%$(acc_train,
acc_test))

3. Now, fix A = 1.0 and train with SGD (you might try to adjust the initial step). Compare the objective values
obtained during training with those obtained with L-BFGS. What do you observe?

lxmls.classifiers.max_ent_online meoc

me_sgd = meoc.MaxEntOnline ()
me_sgd.regularizer = 1.0
params_meo_sc = me_sgd.train(scr.train X,scr.train_y)
y_pred_train = me_sgd.test (scr.train_X,params_meo_sc)
acc_train = me_sgd.evaluate (scr.train_y, y_pred_train)
y_pred_test = me_sgd.test (scr.test_X, params_meo_sc)
acc_test = me_sgd.evaluate (scr.test_y, y_pred_test)
("Max—-Ent Online Amazon Sentiment Accuracy train: $%$f test: %f"$%(acc_train,
acc_test))

Support Vector Machines

Support vector machines are also a discriminative approach, but they are not a probabilistic model at all. The
basic idea is that, if the goal is to accurately predict outputs (according to some cost function), we should focus
on that goal in the first place, rather than trying to estimate a probability distribution (P(Y|X) or P(X,Y)),
which is a more difficult problem. As|Vapnik| (1995) puts it, “do not solve an estimation problem of interest by
solving a more general (harder) problem as an intermediate step.”

We next describe the primal problem associated with multi-class support vector machines (Crammer and
Singer), 2002), which is of primary interest in natural language processing. There is a significant amount of liter-
ature about Kernel Methods (Scholkoptf and Smola) 2002; Shawe-Taylor and Cristianini, 2004) mostly focused
on the dual formulation. We will not discuss non-linear kernels or this dual formulation here["

Consider p(y/,y) as a non-negative cost function, representing the cost of assigning a label y’ when the
correct label was y. For simplicity, we focus here on the 0/1-cost defined by Equation (but keep in mind

19The main reason why we prefer to discuss the primal formulation with linear kernels is that the resulting algorithms run in linear time
(or less), while known kernel-based methods are quadratic with respect to M. In large-scale problems (large M) the former are thus more
appealing.
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Algorithm 6 Stochastic Subgradient Descent for SVMs

1: input: D, A, number of rounds T,
learning rate sequence (1¢);—1,..T
2: initialize w' = 0
3: fort =1to T do
4:  choose m = m(t) randomly
5. take training pair (x™,y™) and compute the “cost-augmented prediction” under the current model:

7 = argmaxw' - f(x™,y") —w' - f(x",y") + p(v,y)
y'eY

6:  update the model:
Wt (L= Mg’ + ¢ (F(X",y™) = F(x", 7))
7: end for

8: output: w + w’ !

that other cost functions are possible). The hinge lossfj] is the function

Uw;x,y) = max [w- f(x,y) —w- flx,y) + 00" y)] (1.33)
Note that the objective of Eq.[1.33|becomes zero wheny’ = y. Hence, we always have £(w; x,) > 0. Moreover,
if pis the 0/1 cost, we have ¢(w; x, y) = 01if and only if the weight vector is such that the model makes a correct
prediction with a margin greater than 1: ie., w- f(x,y) > w- f(x,y') + 1 for all y’ # y. Otherwise, a positive
loss is incurred. The idea behind this formulation is that not only do we want to make a correct prediction, but
we want to make a confident prediction; this is why we have a loss unless the prediction is correct with some
margin.

Support vector machines (SVM) tackle the following optimization problem:

M
© = argmin Y f(w;x"y") + 2wl (134)
w —

m=1

where we also use the squared Ly-norm as the regularizer. For the 0/1-cost, the problem in Eq. is equiva-
lent to:

arg min Y0+ 5l w|)? (1.35)
w,g
st. w-f(x"y") >w- f(x",§")+1—Cn, VYm, g™ €Y\ {y"}. (1.36)

Geometrically, we are trying to choose the linear classifier that yields the largest possible separation margin,
while we allow some violations, penalizing the amount of slack via extra variables {1, ..., (. There is now a
trade-off: increasing the slack variables ¢, makes it easier to satisfy the constraints, but it will also increase the
value of the cost function.

Problem does not have a closed form solution. Moreover, unlike maximum entropy models, the ob-
jective function in is non-differentiable, hence smooth optimization is not possible. However, it is still
convex, which ensures that any local optimum is the global optimum. Despite not being differentiable, we can
still define a subgradient of the objective function (which generalizes the concept of gradient), which enables us
to apply subgradient-based methods. A stochastic subgradient algorithm for solving Eq. is illustrated as
Alg.[6] The similarity with maximum entropy models (Alg. ) is striking: the only difference is that, instead of
computing the feature vector expectation using the current model, we compute the feature vector associated
with the cost-augmented prediction using the current model.

A variant of this algorithm was proposed by [Shalev-Shwartz et al.|(2007) under the name Pegasos, with ex-
cellent properties in large-scale settings. Other algorithms and software packages for training SVMs that have
become popular are SVMLight (http://svmlight. joachims.org) and LIBSVM (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/), which allow non-linear kernels. These will generally be more suitable for
smaller datasets, where high accuracy optimization can be obtained without much computational effort.

The hinge loss for the 0/1 cost is sometimes defined as £(w; x, ) = max{0, max, ., w- f(x,y') —w- f(x,y) +1}. Given our definition
of p(,y), note that the two definitons are equivalent.
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Remark 1.3 Note the similarity between the stochastic (sub-)gradient algorithms (Algs. and the online algorithms
seen above (perceptron and MIRA).

Exercise 1.5 Run the SVM primal algorithm. Then, repeat the MaxEnt exercise now using SVMs, for several values of
A:

Ixmls.classifiers.svm svmc

svm = svmc.SVM()
svm.regularizer = 1.0 # This is lambda
params_svm_sd = svm.train(sd.train_X,sd.train_y)
y_pred_train = svm.test (sd.train_ X, params_svm_sd)
acc_train = svm.evaluate(sd.train_y, y_pred_train)
y_pred_test = svm.test (sd.test_X,params_svm_sd)
acc_test = svm.evaluate (sd.test_y, y_pred _test)
("SVM Online Simple Dataset Accuracy train: %f test: %f"%(acc_train,acc_test))

fig,axis = sd.add _line(fig,axis,params_svm_sd, "SVM", "orange")

params_svm_sc = svm.train(scr.train_X,scr.train_y)
y_pred_train = svm.test (scr.train_X,params_svm_sc)
acc_train = svm.evaluate(scr.train_y, y_pred_train)
y_pred_test = svm.test (scr.test_X,params_svm_sc)
acc_test = svm.evaluate (scr.test_y, y_pred_test)
("SVM Online Amazon Sentiment Accuracy train: %f test: %f"%(acc_train,acc_test))

Compare the results achieved and separating hyperplanes found.

1.5 Comparison

Table[l.1|provides a high-level comparison among the different algorithms discussed in this chapter.

Naive Bayes Perceptron MIRA MaxEnt SVMs
Generative/Discriminative G D D D D
Performance if true model Bad Fair (may Good  Good  Good
not in the hipothesis class not converge)
Performance if features overlap Fair Good Good  Good  Good
Training Closed Form Easy Easy Fair Fair
Hyperparameters to tune 1 (smoothing) 0 1 1 1

Table 1.1: Comparison among different algorithms.

Exercise 1.6 * Using the simple dataset run the different algorithms varying some characteristics of the data: like
the number of points, variance (hence separability), class balance. Use function run_all_classifiers in file lab-
s/run_all_classifiers.py which receives a dataset and plots all decisions boundaries and accuracies. What can you
say about the methods when the amount of data increases? What about when the classes become too unbalanced?

1.6 Final remarks

Some implementations of the discussed algorithms are available on the Web:
e SVMLight: http://svmlight. joachims.org
e LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
¢ Maximum Entropy: http://homepages.inf.ed.ac.uk/lzhangl0/maxent_toolkit.html

e MALLET: http://mallet.cs.umass.edu/.
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Day 2
Non-Linear Classifiers

Today’s class will introduce modern neural network models, commonly known as deep learning models. We
will learn the concept of computation graph, a general way of describing complex functions as composition
of simpler functions. We will also learn about Backpropagation, a generic solution for gradient-descent based
optimization in computation graphs.

2.1 Today’s assignment

Your objective today should be to understand fully the concept of Backpropagation. For this, we will code
Backpropagation in Numpy on a simple feed forward network. Then we will learn about the Pytorch module,
which allows to easily create dynamic computation graphs and computes Backpropagation automatically for
us. If you are new to the topic, you should aim to understand the concept of computation graph, finish the
Backpropagation exercise and attain a basic understanding of Pytorch. If you already know Backpropagation
well and have experience with normal Python, you should aim to complete the whole day.

2.2 Introduction to Deep Learning and Pytorch

Deep learning is the name behind the latest wave of neural network research. This is a very old topic, dating
from the first half of the 20th century, that has attained formidable impact in the machine learning community
recently. There is nothing particularly difficult in deep learning. You have already visited all the mathematical
principles you need in the first days of the labs of this school. At their core, deep learning models are just func-
tions mapping vector inputs x to vector outputs y, constructed by composing linear and non-linear functions.
This composition can be expressed in the form of a computation graph, where each node applies a function to its
inputs and passes the result as its output. The parameters of the model are the weights given to the different
inputs of nodes. This architecture vaguely resembles synapse strengths in human neural networks, hence the
name artificial neural networks.

Since neural networks are just compositions of simple functions, we can apply the chain rule to derive
gradients and learn the parameters of neural networks regardless of their complexity. See Section [0.7.3| for a
refresh on the basic concept. We will also refer to the gradient learning methods introduced in Section [1.4.4}
Today we will focus on feed-forward networks. The topic of recurrent neural networks (RNNs) will be visited in a
posterior chapter.

Some of the changes that led to the surge of deep learning are not only improvements on the existing neural
network algorithms, but also the increase in the amount of data available and computing power. In particular,
the use of Graphical Processing Units (GPUs) has allowed neural networks to be applied to very large datasets.
Working with GPUs is not trivial as it requires dealing with specialized hardware. Luckily, as it is often the
case, we are one Python import away from solving this problem.

For the particular case of deep learning, there is a growing number of toolboxes with python bindings that
allow you to design custom computational graphs for GPUs some of the best known are Theanﬂ TensorFlowE]
and Pytorc}ﬂ

1http: / /deeplearning.net/software/theano/
2https: / /www.tensorflow.org/
Shttp:/ /pytorch.org/

42



In these labs we will be working with Pytorch. Pytorch allows us to create computation graphs of arbitrary
complexity and automatically compute the gradients of the cost with respect to any parameter. It will also
produce CUDA-compatible code for use with GPUs. One salient property of Pytorch, shared with other toolk-
its such as Dynet or Chainer, is that its computation graphs are dynamic. This will be a key factor simplifying
design once we start dealing with more complex models.

2.3 Computation Graphs

2.3.1 Example: The computation graph of a log-linear model

21 lilf
1—.
s
£ B
A © X
Z[xl K
F(D™:0)

Figure 2.1: Representation of a log-linear model as a computation graph: a composition of linear and non-
linear transformations. The classification cost for the m-th training example D™ = {x,y} is also shown. Note
1Y is an indicator vector of size K with a one in position y and zeros elsewhere.

A computation graph is just a way of expressing compositions of functions with a directed acyclic graph.
Fig.[2.1|depicts a log-linear model. Each circle or box corresponds to a node generating one or more outputs
by applying some operation over one or more inputs of the preceding nodes. Circles here denote linear trans-
formations, that is weighted sums of the node input plus a bias. The k;; node output can be thus described
as

Wiixi + by, (2.1)

I
Zj =

i=1
where Wy, and by are weights and bias respectively. Squared boxes represent non-linear transformations.
Applying a softmax function is a way of transforming a K dimensions real-valued vector into a vector of the

same dimension where the sum of all components is one. This allows us to consider the output of this node as
a probability distribution. The softmax in Fig.[2.1|can be expressed as

ply =k|x) =z = :
Y—1 exp(zp)

Note that in the following sections we will also use z and Z to denote the output of linear and non-linear
functions respectively. By composing Eq.[2.1]and Eq. [2.2) we obtain a log-linear model similar to the one we
saw on Chapter@ﬂ This is given by

1 I
ply = klx) = Z(W,b,x) exp (lzl Wiix; + bk) , (2.3)

4There are some differences with respect to Eq|1.26] like the use of a bias b. Also, if we consider the binary joint feature mapping
f(x,y) = g(x) ® ey of Eq[1.16] the maximum entropy classifier in Eq becomes a special case of Eq2.3) in which the feature vector x
only takes binary values and the bias parameters in b are all set to zero.
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where

K I
Z(W,b,x) = Z exp (Z Wiix; + bkz> (2.4)

k=1 i=1

is the partition function ensuring that all output values sum to one. The model thus receives a feature vector
x € R! and assigns a probability over y € 1- - - K possible class indices. It is parametrized by weights and bias
©® = {W,b}, with W € R&*T and b € RK.

2.3.2 Stochastic Gradient Descent: a refresher

As we saw on day one, the parameters of a log linear model ® = {W,b} can be learned with Stochastic
Gradient Descent (SGD). To apply SGD we first need to define an error function that measures how good we
are doing for any given parameter values. To remain close to the maximum entropy example, we will use as
cost function the average minus posterior probability of the correct class, also known as the Cross-Entropy
(CE) criterion. Bear in mind, however, that we could pick other non-linear functions and cost functions that
do not have a probabilistic interpretation. For example, the same principle could be applied to a regression
problem where the cost is the Mean Square Error (MSE). For a training data-set D = {(x!,y!),..., 6M,yM)}
of M examples, the CE cost function is given by

M
F(0;0) = - Y logp(y” = K(m)}<"), 5)

where k(m) is the correct class index for the m-th example. To learn the parameters of this model with SGD,
all we need to do is compute the gradient of the cost VJF with respect to the parameters of the model and
iteratively update our parameter estimates as

W« W — Vw5 (2.6)

and
b < b—-yVp7, (2.7)

where 7 is the learning rate. Note that in practice we will use a mini-batch of examples as opposed to the
whole train set. Very often, more elaborated learning rules as e.g. momentum or Adagrad are used. Bear in
mind that, in general, these still require the computation of the gradients as the main step. The reasoning here
outlined will also be applicable to those.

2.3.3 Deriving Gradients in Computation Graphs using the Chain Rule

T
~ 1
L Z1 lf
® e
x
2 7 : g k7]
o. W2 = 8
. o~ SS @D 5. ly
. Sso 0z OF 2K K
. A( ; )—» - - l—@
° GWKQ [‘)z K
Ty é bK l

Figure 2.2: Forward-pass (blue) and Backpropagation (red) calculations to estimate the gradient of weight Wk,
and bias by of a log-linear model.

The expressions for VJ are well known in the case of log-linear models. However, for the sake of the
introduction to deep learning, we will show how they can be derived by exploiting the decomposition of the
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cost function into the computational graph seen in the last section (and represented in Fig.[2.1). To simplify
notation, and without loss of generality, we will work with the classification cost of an individual example

F(D™;0) = —logp(y" = k(m)x™), (2.8)

where D" = {(x",y™)}.

Lets start by computing the element (k, i) of the gradient matrix VwF(D; ®), which contains the partial
derivative with respect to the weight Wy;. To do this, we invoke the chain rule to split the derivative calculation
into two terms at variable zy/ (Eq withk’ =1---K

0F (D™ 0) & 9F (D™ 0) ozy

= B . 2.9
d Wki kgl 0z K d Wki ( )

We have thus transformed the problem of computing the derivative into computing two easier derivatives. We
start by the right-most term. The relation between z; and W, is given in Eq. Since zy only depends on the
weight W;; in a linear way, the second derivative in Eq is given by

ifk =K

dzp 0 ZI:W T4 b | = xl 2.10)
oWy Wi \ /4 K oK 0 otherwise . '

For the left-most term, the relation between F(D"; ®) and z; is given by Eq. 2.2/ together with

. K —(1—-32 i — k(m
M — _aazk (Zk(m) _log (Z exp(zk,)>> _ { (1 k) fk k( ) (2'11)

0z K—1 —(—z) otherwise .

Bringing the two parts together, we obtain

9F(D"0) _ {—(1 —Z)xf" ik =k(m) (212)

oW, —(—Zg)xl" otherwise .
From the formula for each element and a single example, we can now obtain the gradient matrix for a batch of
M examples by simply averaging and expressing the previous equations in vector form as follows

VwF(D;0) = —% % (1y”’ - z'") xm7. 2.13)
m=1

Here 1" € RX is a vector of zeros with a one in y™ = k(m), which is the index of the correct class for the
example m.

In order to compute the derivatives of the cost function with respect to the bias parameters by, we only
need to compute one additional derivative

oz 1 ifk=K
= 2.14
by {0 otherwise . @14)
This leads us to the last gradient expression
1 &
@) = — — Yy gm
VbF(D;0) = — 5 m;l (1 z ) . (2.15)

An important consequence of the previous derivation is the fact that each gradient of the parameters VwF(D; ©)
and V,F(D; ©®) can be computed from two terms, displayed with corresponding colours in Fig.

1. The derivative of the cost with respect to the ky, output of the linear transformation 0F(D™;®)/0dz,
denoted in red. This is, in effect, the error that we propagate backwards from the cost layer.

2. The derivative of the forward-pass up to the linear transformation applying the weight dz;/9dWj;, de-
noted in blue. This is always equal to the input multiplying that weight or one in the case of the bias.

This is the key to the Backpropagation algorithm as we will see in the next Section 2.4}
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Exercise 2.1 To ease-up the upcoming implementation exercise, examine and comment the following implementation of
a log-linear model and its gradient update rule. Start by loading Amazon sentiment corpus used in day[T]

1lxmls.readers.sentiment_reader srs
Ixmls.deep_learning.utils AmazonData
corpus=srs.SentimentCorpus ("books")
data = AmazonData (corpus=corpus)

Compare the following numpy implementation of a log-linear model with the derivations seen in the previous sections.
Introduce comments on the blocks marked with # relating them to the corresponding algorithm steps.

lxmls.deep_learning.utils Model, glorot_weight_init, index2onehot, logsumexp
numpy np

NumpyLogLinear (Model) :
__init__ (self, =##config):

# Initialize parameters

weight_shape = (config['input_size'], config['num classes'])
# after Xavier Glorot et al

self.weight = glorot_weight_init (weight_shape, 'softmax')
self.bias = np.zeros((1, config['num classes']))
self.learning _rate = config['learning rate']

log forward(self, input=None) :
"""Forward pass of the computation graph"""

# Linear transformation
z = np.dot (input, self.weight.T) + self.bias

# Softmax implemented in log domain
log_ tilde z = z - logsumexp(z, axis=1, keepdims=True)

log_tilde_ =z

predict (self, input=None) :
"""Prediction: most probable class index"""
np.argmax (np.exp (self.log_forward(input)), axis=1)

update (self, input=None, output=None) :
"""Stochastic Gradient Descent update”"""

# Probabilities of each class
class_probabilities = np.exp(self.log_forward (input))
batch_size, num_classes = class_probabilities.shape

# Error derivative at softmax layer
I = index2onehot (output, num_classes)
error = (class_probabilities - I) / batch_size

# Weight gradient
gradient_weight = np.zeros (self.weight.shape)
1 range (batch_size) :
gradient_weight += np.outer (error(l, :], dinput[l, :])

# Bias gradient
gradient_bias = np.sum(error, axis=0, keepdims=True)

# SGD update
self.weight = self.weight - self.learning_rate x gradient_weight
self.bias = self.bias - self.learning rate #* gradient_bias
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Instantiate model and data classes. Check the initial accuracy of the model. This should be close to 50% since we are on a
binary prediction task and the model is not trained yet.

# Instantiate model

model = NumpyLogLinear (
input_size=corpus.nr_features,
num_classes=2,
learning_rate=0.05

)

# Define number of epochs and batch size
num_epochs = 10
batch _size = 30

# Instantiate data iterators
train _batches = data.batches('train', batch _size=batch _size)
test_set = data.batches('test', batch_size=None) [0]

# Check initial accuracy
hat_y = model.predict (input=test_set['input'])
accuracy = 100+np.mean (hat_y == test_set['output'])

o0 )

("Initial accuracy $%2.2f %%" % accuracy)

Train the model with simple batch stochastic gradient descent. Be sure to understand each of the steps involved, including
the code running inside of the model class. We will be wokring on a more complex version of the model in the upcoming
exercise.

# Epoch loop
epoch range (num_epochs) :

# Batch loop
batch train batches:
model.update (input=batch['input '], output=batch['output'])

# Prediction for this epoch
hat_y = model.predict (input=test_set['input'])

# Evaluation
accuracy = 100xnp.mean (hat_y == test_set['output'])
("Epoch %d: accuracy %2.2f %%" & (epoch+1, accuracy))

2.4 Going Deeper than Log-linear by using Composition

2.4.1 The Multilayer Perceptron or Feed-Forward Network

We have seen that just by using the chain rule we can easily compute gradients for compositions of two func-
tions (one non-linear and one linear). However, there was nothing in the derivation that would stop us from
composing more than two functions. The algorithm in[7|describes the Multi-Layer Perceptron (MLP) or Feed-
Forward (FF) network. In a similar fashion to the log-linear model, the MLP/FF can be expressed as a compu-
tation graph and is displayed in Fig. Take into account the following:

¢ MLPs/FFs are characterized by applying functions in a set of layers subsequently to a single input. This
characteristic is also shared by convolutional networks, although the latter also have parameter tying
constraints.

¢ The non-linearities in the intermediate layers are usually one-to-one transformations. The most typical
are the sigmoid, hyperbolic tangent and the rectified linear unit (ReLU).

* The output non-linearity is determined by the output to be estimated. In order to estimate probability
distributions the softmax is typically used. For regression problems a last linear layer is used instead.
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Algorithm 7 Forward pass of a Multi-Layer Perceptron (MLP) or Feed-Forward (FF) network

input: Initial parameters for an MLP of N layers @ = {W!,b!,... WN bN}
input: Input data vector 2° = x.

:forn=1to N —-1do

Apply linear transformation

L AN

i

I
2} =Y Wizl by

1
on _ ony
7 =o(z) 1+ exp(—z]”)
6: end for
7: Apply final linear transformation
J
N NsN-1_ 1N
j=1
8: Apply final non-linear transformation e.g. softmax
. exp(z})
ply =klx) =2 = ‘

25:1 eXP(Z;I}])

2.4.2 Backpropagation: an overview

For the examples in this chapter we will consider the case in which we are estimating a distribution over
classes, thus we will use the CE cost function (Eq. 2.5).

To compute the gradient with respect the parameters of the n-th layer, we just need to apply the chain rule
as in the previous section, consecutively. Fortunately, we do not need to repeat this procedure for each layer
as it is easy to spot a recursive rule (the Backpropagation recursion) that is valid for many neural models,
including feed-forward networks (such as MLPs) as well as recurrent neural networks (RNNs) with minor
modifications. The Backpropagation method, which is given in Algorithm [§|for the case of an MLP, consists of
the following steps:

* The forward pass step, where the input signal is injected though the network in a forward fashion (see

Alg.

¢ The Backpropagation step, where the derivative of the cost function (also called error) is injected back
through the network and backpropagated according to the derivative rules (see steps 8-17 in Alg.

Nj\“ y
2 1
> l—@
o N x
5 z £ ?
: 5 3.8
@ | 2N Y
- 3 K Iy
> l«—@
F(D™6)

Figure 2.3: Representation of a Multi-Layer Perceptron (MLP) or Feed-Forward (FF) network as a computation
graph. The classification cost for the m-th training example D™ = {x,y} is also shown.
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¢ Finally, the gradients with respect to the parameters are computed by multiplying the input signal from
the forward pass and the backpropagated error signal, at the corresponding places in the network (step

18 in Alg.[8)

¢ Given the gradients computed in the previous step, the model weights can then be easily update accord-
ing to a specified learning rule (step 19 in Alg.[8uses a mini-batch SGD update rule).

The main step of the method is the Backpropagation step, where one has to compute the Backpropagation

recursion rules for a specific network. The next section presents a careful deduction of these recursion rules,
for the present MLP model.

2.4.3 Backpropagation: deriving the rule for a feed forward network

® o]

N :
: (!
,/vf\“'—] 6]—' 8]—' 821 11
w:t : - O
N x
o ! © —
& Z £ 8
> o = o
5 > A y
S I
< l«—O

Figure 2.4: Forward-pass (blue) and Backpropagation (red) calculations to estimate the gradient of weight Wj;
atlayer N — 1 of a MLP.

In a generic MLP we would like to compute the values of all parameters ® = {Wl,b1,~ - WN pN } As
explained previously, we will thus need to compute the backpropagated error at each node 0F(D";®)/0z},
and the corresponding derivative for the forward-pass dz;' /dWy;, for n = 1- - - N. Fortunately, it is easy to spot
a recursion that will allow us to compute these values for each node, given all its child nodes. To spot it, we
can start trying to compute the gradients one layer before the output layer (see Fig.2.4), i.e. layer N — 1. We
start by splitting at with respect to the output of the linear layer at N — 1

0F(Dm0) L aF(pm;e) 9% aF(Dme) 0z

N—1 Z N—1 N—1 N—1 N—1
E)Wﬁ =1 azj, BWﬁ az}. E)Wji

(2.16)

where, as in the case of the log-linear model, we have used the fact that the ouput of the linear layer Z]N ~Lonly

depends on W]Il\] ~1. We now pick the left-most factor and apply the chain rule to split by the output of the

N

non-linear layer Z j -1, Assuming that the non linear transformation is one-to-one, as e.g. a sigmoid, tanh, relu

we have

dF(D™; @) B J IF(D™; ©) az}f.}"l B AF(D™; O) afj-\]_l
j = 7 j j j

(2.17)

To spot a recursion we only need to apply the chain rule a third time. The next variable to split by is the linear
output of layer N, z]N . By looking at Fig. it is clear that the derivatives at each node in layer N — 1 will
depend on all values of layer N. For the linear layer the summation won’t go away yielding

m. K m. 9 Z\/] aZN_l
83”@/@):< 9F(D";©) 9z ) j (218)

E)ZJN*] k; Bzf{\,’ 82;\]*1 azj[-\]*]
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If we call the derivative of the error with respect to the Ny, linear layer output as

0F (D™, 0)
N 7
e = ——— 2.19
k aZ]I{\] ( )
it is easy to deduce from Egs. that
K N sN-1
e]N — ( el alzfl) %. (2.20)
Wy 0Z j az].
coming back to the original we obtain the formula for the update of each of the weights and bias
m. m.
0F (D", 0) _ t’f\lflf,N_z, 0F (D", 0) _ oN-1 (221)

N—1 N-1 ]
aw} av]

These formulas are valid for any FF network with hidden layers using one-to-one non-linearities. For the
network described in Algorithm [/jwe have

ozl 0z"

N _ SN K _ wN i s . .

e =1Y—-3z", oaN-T = Wp; and ﬁ—z?-(l—z}q) with ne {l1---N -2} (2.22)
]

A more detailed version can be seen in Algorithm [§]

2.4.4 Backpropagation as a general rule

Once we get comfortable with the derivation of Backpropagation for the FF, it is simple to see that expanding
to generic computations graphs is trivial. If we wanted to change the sigmoid non-linearity by a Rectified
Linear Unit (ReLU) we would only need to change forward and Backpropagation derivative of the hidden
non-linearities as

s Zj ifZ]' >=0 %: 1 ifZ]‘>0 (2.23)
! 0 otherwise. 0z; 0 otherwise.

More importantly, Backpropagation can be always defined as a direct acyclic graph with the reverse direction
of the forward-pass, where at each node we apply the transpose of the Jacobian of each linear or non linear
transformation. Coming back to Eq. we have the vector formula

oN-1 _ (]zzy—l) T (J% ) TN, (2.24)

In other words, regardless of the topology of the network and as long as we can compute the forward-pass
and the Jacobian of each individual node, we will be able to compute Backpropagation.
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Algorithm 8 Mini-batch SGD with Back-Propagation

1: input: Data D = {Dj, Dy, ..., Dp} split into B mini-batches of size M’, MLP of N layers, with parameters

® = {WLbl,...WN bN} number of rounds T, learning rate
g Ui

2: initialize parameters ® randomly
3: fort =1to T do

4 forb=1toBdo
5: form =1to M’ do
6: Compute the forward pass for each of the M’ examples in batch b; keep not only p(y"|x") = "N
but also all the intermediate non-linear outputs 2! - - - 2N,
7: end for
8: forn = Ntoldo
9: if n==N then
10: form =1to M’ do
11: Initialize the error at last layer, for each example m. For the softmax with CE cost this is given
by:
em'N = (1k(m) — Zm'N).
12: end for
13: else
14: form =1to M’ do
15: Backpropagate the error through the linear layer, for each example m:
e — ((wn+1)Tem,n+l)
16: Backpropagate the error through the non-linearity, for the sigmoid this is:
e =e" oz o (1-2""),
where © is the element-wise product and the 1 is replicated to match the size of z".
17: end for
18: end if
19: Compute the gradients using the backpropagated errors and the inputs from the forward pass
1M 1\ T
VwiF(D;0) = -7 Y e (271)
m=1
1 M
Vbn?(@,@) = —M Z em’”.
m=1
20: Update the parameters
W+ W' — Uanffr,
b" < b" — yVpnF.
21: end for
22:  end for
23: end for
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Exercise 2.2 [nstantiate the feed-forward model class and optimization parameters. This models follows the architecture
described in Algorithm|7]

# Model
geometry = [corpus.nr_features, 20, 2]
activation_functions = ['sigmoid', 'softmax']

# Optimization
learning _rate = 0.05
num_epochs = 10
batch _size = 30

# Instantiate model
Ixmls.deep_learning.numpy_models.mlp NumpyMLP
model = NumpyMLP (
geometry=geometry,
activation_functions=activation_functions,
learning_rate=learning_rate

Open the code for this model. This is located in ‘Ixmls/deep_learning/numpy_models/mlp.py’. Implement the method
‘backpropagation()” in the class ‘NumpyMLP’ using Backpropagation recursion that we just saw.

As a first step focus on getting the gradients of each layer, one at a time. Use the code below to plot the loss values for
the study weight and perturbed versions.

Ixmls.deep_learning.mlp get_mlp_parameter._handlers, get_mlp_ loss_range

# Get functions to get and set values of a particular weight of the model
get_parameter, set_parameter = get_mlp parameter.__handlers (

layer._index=1,

is_bias=False,

row=0,

column=0

# Get batch of data
batch = data.batches('train', batch_size=batch_size) [0]

# Get loss and weight value
current_loss = model.cross_entropy_loss (batch['input'], batch['output'])
current_weight = get_parameter (model.parameters)

# Get range of values of the weight and loss around current parameters values
weight_range, loss_range = get_mlp loss_range (model, get_parameter, set_parameter, batch)

Once you have implemented at least the gradient of the last layer. You can start checking if the values match

gradients = model.backpropagation (batch['input'], batch['output'])

current_gradient = get_parameter (gradients)

Now you can plot the values of the loss around a given parameters value versus the gradient. If you have implemented this
correctly the gradient should be tangent to the loss at the current weight value, see Figure[2.5] Once you have completed
the exercise, you should be able to plot also the gradients of the other layers. Take into account that the gradients for the
first layer will only be non zero for the indices of words present in the batch. You can locate this using.

batch['"input '] [0] .nonzero () I

Copy the following code for plotting
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%matplotlib inline # for jupyter notebooks
matplotlib.pyplot plt
# Plot empirical
plt.plot (weight_range, loss_range)
plt.plot (current_weight, current_loss,
plt.ylabel ('loss value')
plt.xlabel ('weight value')
# Plot real
h = plt.plot(
weight_range,
current_gradient+« (weight_range - current_weight) + current_loss,

IXI.V)

loss value

-1 . . | .
-10 -5 0 5 10 15

weight value

Figure 2.5: Values of the loss (blue) and gradient (dashed red) for a given weight of the network, as well loss
values for small perturbations of the weight.

After you have ensured that your Backpropagation algorithm is correct, you can train a model with the data we have.

# Get batch iterators for train and test
train batches = data.batches ('train', batch_size=batch_size)
test_set = data.batches('test', batch_size=None) [0]

# Epoch loop
epoch range (num_epochs) :

# Batch loop
batch train batches:
model.update (input=batch['input'], output=batch['output'])

# Prediction for this epoch
hat_y = model.predict (input=test_set['input'])

# Evaluation
accuracy = 100+np.mean (hat_y == test_set['output'])
("Epoch %d: accuracy $2.2f %%" % (epoch+1, accuracy))
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2.4.5 Some final reflections on Backpropagation

If you are new to the neural network topic, this is about the most important piece of theory you should learn
about deep learning. Here are some reflections that you should keep in mind.

* Backpropagation allows us in principle to compute the gradients for any differentiable computation
graph.

* We only need to know the forward-pass and Jacobian of each individual node in the network to imple-
ment Backpropagation.

* Learning guarantees are however weaker than for expectation maximization or convex optimization
algorithms.

¢ In practice optimization will often get trapped on local minima and exhibit high variance in performance
for small changes.

2.5 Deriving gradients and GPU code with Pytorch

2,51 An Introduction to Pytorch and Computation Graph Toolkits

As you may have observed, the speed of SGD training for MLPs slows down considerably when we increase
the number of layers. One reason for this is that the code that we use here is not very optimized. It is thought
for you to learn the basic principles. Even if the code was more optimized, it would still be very slow for
reasonable network sizes. The cost of computing each linear layer is proportional to the dimensionality of the
previous and current layers, which in most cases will be rather large.

For this reason most deep learning applications use Graphics Processing Units (GPU) in their computations.
This specialized hardware is normally used to accelerate computer graphics, but can also be used for some
computation intensive tasks like matrix multiplications. However, we need to deal with specific interfaces and
operations in order to use a GPU. This is where Pytorch comes in. Pytorch is a computation graph toolkit with
following nice features

* Automatic differentiation. We only need to express the computation graph of the forward pass. Pytorch
will compute the gradients for us.

* GPU integration: The code will be ready to work on a GPU.
* An active community focused on the application of Pytorch to Deep Learning.

* Dynamic computation graphs. This allows us to change the computation graph within each update.

Note that all of these properties are separately available in other toolkits. Dynet has very good dynamic
graph functionality and cpu performance, Tensor Flow is backed by Google and has a large community, Ama-
zon’s MXNet of Microsoft’s CNTK are also competing to play a central role. It is hard to say at this point which
toolkit will be the best option in the future. At this point we chose Pytorch because it strikes a balance between
a strong community, ease of use and dynamic computation graphs. Also take into account that transiting from
a toolkit to another is not very complicated, as the primitives are relatively similar across them.

In general, and compared to numpy, computation graph toolkits are less easy to use. In the case of Pytorch
we will have to consider following aspects

* Pytorch types are less flexible than numpy arrays since they have to act on data stored on the GPU.
Casting of all variables to Pytorch types will be often a source of errors.

* Not all operations available in numpy are available on Pytorch. Also the semantics of the function may
differ.

* Despite being a big improvement compared to the early toolkits like Theano, Pytorch errors can still be
difficult to track sometimes.

* As we will see, Pytorch has a good GPU performance, but its CPU performance is not great. Particularly
at small sizes.

54



Exercise 2.3 [n order to learn the differences between a numpy and a Pytorch implementation, explore the reimplementa-
tion of Ex.[2.1)in Pytorch. Compare the content of each of the functions, in particular the forward() and update methods().
The comments indicated as IMPORTANT will highlight common sources of errots.

import torch

class PytorchLogLinear (Model) :
def __dinit (self, ##config):

# Initialize parameters

weight_shape = (config['input_size'], config['num classes'])
# after Xavier Glorot et al

weight_np = glorot_weight_init (weight_shape, 'softmax')
self.learning_rate = config['learning rate']

# IMPORTANT: Cast to pytorch format
self.weight = torch.from numpy (weight_np).float ()
self.weight.requires_grad = True

self.bias = torch.zeros (1, config['num classes'], requires_grad=True)

self.log_softmax = torch.nn.LogSoftmax (dim=1)
self.loss_function = torch.nn.NLLLoss ()

def _log forward(self, input=None) :
"""EForward pass of the computation graph in logarithm domain (pytorch)"""

# IMPORTANT: Cast to pytorch format
input = torch.from numpy (input) .float ()

# Linear transformation
z = torch.matmul (input, torch.t (self.weight)) + self.bias

# Softmax implemented in log domain
log _tilde_z = self.log_softmax(z)

# NOTE that this is a pytorch class!
return log_tilde_z

def predict (self, input=None) :
"""Most probable class index
log_forward = self._log_forward(input) .data.numpy ()
return np.argmax (log_forward, axis=1)

mmon

def update (self, input=None, output=None) :
"""Stochastic Gradient Descent update"""

# IMPORTANT: Class indices need to be casted to LONG
true_class = torch.from numpy (output) .long/()

# Compute negative log-likelihood 1loss
loss = self.loss_function(self._log_forward (input), true_class)

# Use autograd to compute the backward pass.
loss.backward()

# SGD update
self.weight.data —-= self.learning _rate % self.weight.grad.data
self.bias.data —-= self.learning_rate » self.bias.grad.data

# Zero gradients

self.weight.grad.data.zero_ ()
self.bias.grad.data.zero_ ()
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loss.data.numpy () I

Once you understand the model you can instantiate it and run it using the standard training loop we have used on
previous exercises.

# Instantiate model

model = PytorchLogLinear (
input_size=corpus.nr_features,
num_classes=2,
learning_rate=0.05

Exercise 2.4 As the final exercise today implement the log_forward() method in Ixmls/deep_learning/pytorch_models/mlp.py.
Use the previous exercise as reference. After you have completed this you can run both systems for comparison.

# Model
geometry = [corpus.nr_features, 20, 2]
activation_functions = ['sigmoid', 'softmax']

# Instantiate model

numpy np
Ixmls.deep_learning.pytorch _models.mlp PytorchMLP
model = PytorchMLP (
geometry=geometry,

activation_functions=activation_functions,
learning_rate=0.05
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Day 3
Sequence Models

Today’s class will be focused on advanced deep learning concepts, mainly Recurrent Neural Networks (RNNss).
In the first day we saw how the chain-rule allowed us to compute gradients for arbitrary computation graphs.
Today we will see that we can still do this for more complex models like Recurrent Neural Networks (RNNs).
In these models we will input data in different points of the graph, which will correspond to different time
instants. The key factor to consider is that, for a fixed number of time steps, this is still a computation graph
and all what we saw on the first day applies with no need for extra math.

If you managed to finish the previous day completely you should aim at finishing this as well. If you still
have pending exercises from the first day e.g. the Pytorch part. It is recommended that you try to solve them
first and then continue with this day.

3.1 Recurrent Neural Networks: Backpropagation Through Time

3.1.1 Feed Forward Networks Unfolded in Time

Ow Ow Owr

hy

o /o ol hp
wh wh

W W& We

!

X9 X7

Figure 3.1: The simplest RNN can be seen as replicating a single hidden-layer FF network T times and passing
the intermediate hidden variable h; across different steps. Note that all nodes operate over vector inputs e.g,.
x; € RI. Circles indicate matrix multiplications.

We have seen already Feed Forward (FF) networks. These networks are ill suited to learn variable length
patterns since they only accept inputs of a fixed size. In order to learn sequences using neural networks,
we need therefore to define some architecture that is able to process variable length inputs. Recurrent Neural
Networks (RNNs) solve this problem by unfolding the computation graph in time. In other words, the network
is replicated as many times as it is necessary to cover the sequence to be modeled. In order to model the
sequence one or more connections across different time instants are created. This allows the network to have a
memory in time and thus capture complex patterns in sequences. In the simplest model, depicted in Fig.
and detailed in Algorithm [0} a RNN is created by replicating a single hidden-layer FF network T times and
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passing the intermediate hidden variable across different steps. The strength of the connection is determined
by the weight matrix W,

3.1.2 Backpropagating through Unfolded Networks

Figure 3.2: Forward-pass (blue) and backpropagated error (red) to the input layer of an RNN. Note that a copy
of the error is sent to each output of each sum node (+)

It is important to note that there is no formal changes needed to apply backpropagation to RNNs. It con-
cerns applying the chain rule just as it happened with FFs. It is however useful to consider the following
properties of derivatives, which are not relevant when dealing with FFs

* When two variables are summed up in the forward-pass, the error is backpropagated to each of the
summand sub-graphs

* When unfolding in T steps the same parameters will be copied T times. All updates for each copy are
summed up to compute the total gradient.

Despite the lack of formal changes, the fact that we backpropagate an error over the length of the entire
sequence often leads to numerical problems. The problem of vanishing and exploding gradients are a well know
limitation. A number of solutions are used to mitigate this issue. One simple, yet inelegant, method is clipping
the gradients to a fixed threshold. Another solution is to resort to more complex RNN models that are able
to better handle long range dependencies and are less sensitive to this phenomena. It is important to bear
in mind, however, that all RNNs still use backpropagation as seen in the previous day, although it is often
referred as Backpropagation through time.

Exercise 3.1 Convince yourself that a RNN is just an FF unfolded in time. Complete the backpropagation() method in
NumpyRNN class in [xmls/deep_learning/mumpy_models/rnn.py and compare it with
Ixmls/deep learning/numpy/models/mlp.py.

To work with RNNs we will use the Part-of-speech data-set.

# Load Part-of-Speech data
lxmls.readers.pos_corpus PostagCorpusData

data = PostagCorpusData ()
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Algorithm 9 Forward pass of a Recurrent Neural Network (RNN) with embeddings

1: input: Initial parameters for an RNN Input ® = {W¢ ¢ REX[, W¥ ¢ R/I*E, W' ¢ R/, Wy ¢ RK*T}
embedding, input, recurrent and output linear transformations respectively.

2: input: Input data matrix x € R! xM' representing sentence of M’ time steps. Initial recurrent variable h.
3: form =1to M’ do
Apply embedding layer

=

I
e _ e ..
Zgm = deixzm
i=1

o

Apply linear transformation combining embedding and recurrent signals
h 3 L h
X e
Zjm = ) WiaZam + )3 Wijihjim-1
d=1 i'=1

6:  Apply non-linear transformation e.g. sigmoid (hereby denoted o/())
by = _
m

4 1+ exp(—z?m)

7: end for
8: Apply final linear transformation to each of the recurrent variables h; - - - hyp

J
vy o_ vy
Zkem = Z Wigtjm
=1

Nel

: Apply final non-linear transformation e.g. softmax

exp(z,)
Z;5:1 exp (ZZ’m )

Y
km —

p(ym = k|x1ny1) = 2
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Algorithm 10 Backpropagation for a Recurrent Neural Network (RNN) with embeddings

1:

input: Data D = {Dj, D», ..., Dp} split into B sequences (batch size 1) of size M’. RNN with parameters
O ={W°e REXI Wx ¢ RIXE Wl ¢ RI*] Wy e RKXJ } embedding, input, recurrent and output linear
transformations respectively. Number of rounds T, learning rate #

2: initialize parameters ® randomly

3 fort =1to T do
4 forb=1toBdo
5: form =1to M’ do
6: Compute the forward pass for sentence b (M’ time steps); keep not only Z% ., butalso, the RNN layer
activations hj,, and the embedding layer activations z& .
] dm
7: end for
8: form =1to M’ do
9: Initialize the error at last layer for a CE cost and backpropagate it through the output linear layer:
e = (W)T (1k(m) - z%)
10: end for
11: Initialize recurrent layer error e, to a vector of zeros of size |
12: form = M to1do
13: Add the recurrent layer backpropagated error and backpropagate through the sigmoid non-
linearity:
e = (e + ) ©hy © (1-hy)
14: where © is the element-wise product and the 1 is replicated to match the size of h".
15: Backpropagate the error through the recurrent linear layer
e, = (WHTer
16: Backpropagate the error through the input linear layer
el = (W) Tef!
17: end for
18: Compute the gradients using the backpropagated errors and the inputs from the forward pass. For
example for the recurrent layer
1 u m T
thg:('D/@) - *M Z eh : (hmfl) s
m=1
For the input layer
1 ¥ m e T
wa?(D,®):—M Z eh (Zm) ,
m=1
19: Update the parameters, for example for the input layer
W~ W — Vw7,
20:  end for
21: end for
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Load and configure the NumpyRNN. Remember to use reload if you want to modify the code inside the rnns module

# Instantiate RNN
Ixmls.deep_learning.numpy_models.rnn NumpyRNN

model = NumpyRNN (

input_size=data.input_size,

embedding_size=50,

hidden size=20,

output_size=data.output_size,

learning rate=0.1

As in the case of the feed-forward networks you can use the following setup to test step by step the implementation of the
gradients. First compute the cost variation for the variation of a single weight

I1xmls.deep_learning.rnn get_rnn_parameter_handlers, get_rnn_loss_range

# Get functions to get and set values of a particular weight of the model

get_parameter, set_parameter = get_rnn_parameter_handlers (
layer._index=-1,
row=0,

column=0

# Get batch of data
batch = data.batches('train', batch_size=1) [0]

# Get loss and weight value
current_loss = model.cross_entropy_loss (batch['input'], batch['output'])
current_weight = get_parameter (model.parameters)

# Get range of values of the weight and loss around current parameters values
weight_range, loss_range = get_rnn _loss_range (model, get_parameter, set_parameter, batch)

then compute the desired gradient from your implementation

# Get the gradient value for that weight
gradients = model.backpropagation (batch['input'], batch['output'])
current_gradient = get_parameter (gradients)

and finally call matlplotlib to plot the loss variation versus the gradient

Smatplotlib inline
matplotlib.pyplot plt
# Plot empirical
plt.plot (weight_range, loss_range)
plt.plot (current_weight, current_loss, 'xr')
plt.ylabel ('loss value')
plt.xlabel ('weight value')
# Plot real
h = plt.plot(
weight_range,
current_gradient+ (weight_range - current_weight) + current_loss,
Yr777
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After you have completed the gradients you can run the model in the POS task

numpy np
time

# Hyper-parameters
num_epochs = 20

# Get batch iterators for train and test

train _batches = data.batches('train', batch _size=1)
dev_set = data.batches('dev', batch_size=1)
test_set = data.batches ('test', batch_size=1)

# Epoch loop
start = time.time ()
epoch range (num_epochs) :

# Batch loop
batch train batches:
model.update (input=batch['input '], output=batch['output'])

# Evaluation dev
is_hit = []

batch dev_set:

is_hit.extend(model.predict (input=batch['input']) == batch['output'])
accuracy = 100+np.mean (is_hit)

o3

("Epoch %d: dev accuracy $2.2f %%" % (epoch+1, accuracy))
("Training took $%2.2f seconds per epoch" % ((time.time() - start)/num_epochs))

# Evaluation test
is_hit = []

batch test_set:

is _hit.extend(model.predict (input=batch['input']) == batch['output'])
accuracy = 100+np.mean(is_hit)

# Inform user

("Test accuracy %2.2f %%" % accuracy)
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3.2 Implementing your own RNN in Pytorch

One of the big advantages of toolkits like Pytorch or Dynet is that creating computation graphs that dynami-
cally change size is very simple. In many other tookits it is directly not possible to use a Python for loop with
a variable length to define a computation graph. Again, as in other toolkits we will only need to create the
forward pass of the RNN and the gradients will be computed automatically for us.

Exercise 3.2 As we did with the feed-forward network, we will now implement a Recurrent Neural Network (RNN) in
Pytorch. For this complete the log_forward() method in Ixmls/deep_learning/pytorch_models/rnn.py.
Load the RNN model in numpy and Pytorch for comparison

# Numpy version

I1xmls.deep_learning.numpy_models.rnn NumpyRNN
numpy_model = NumpyRNN (

input_size=data.input_size,

embedding _size=50,

hidden size=20,

output_size=data.output_size,

learning_rate=0.1

# Pytorch version
I1xmls.deep_learning.pytorch _models.rnn PytorchRNN

model = PytorchRNN (

input_size=data.input_size,

embedding_size=embedding_size,

hidden size=hidden_size,

output_size=data.output_size,

learning_rate=learning_rate

To debug your code you can compare the numpy and Pytorch gradients using

# Get gradients for both models
batch = data.batches('train', batch_size=1) [0]

gradient_numpy = numpy_model.backpropagation (batch['input'], batch['output'])
gradient = model.backpropagation (batch['input'], batch['output'])

and then plotting them with matplotlib

smatplotlib inline
matplotlib.pyplot plt
# Gradient for word embeddings in the example
plt.subplot (2,2,1)
plt.imshow (gradient_numpy[0] [batch['input'], :], aspect='auto', interpolation='nearest')
plt.colorbar ()
plt.subplot (2,2,2)
plt.imshow (gradient [0] .numpy () [batch['input'], :], aspect='auto', interpolation='nearest'
)
plt.colorbar()
# Gradient for word embeddings in the example
plt.subplot (2,2, 3)
plt.imshow (gradient_numpy[l], aspect='auto', interpolation='nearest')
plt.colorbar()
plt.subplot (2,2,4)
plt.imshow (gradient[1].numpy (), aspect='auto', interpolation='nearest')
plt.colorbar()
plt.show()

Once you are confident that your implementation is working correctly you can run it on the POS task using the Pytorch
code from the Exercise(3.1
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Day 4

Transformers

4.1 Today’s assignment

Today’s class will demystify the Transformer architecture Vaswani et al|(2017). Transformers have become the
dominant model in Natural Language Processing, pushing the performance of many tasks through models
like BERT |Devlin et al.| (2018) and GPT |Brown et al. (2020a)). In this class, we will review the transformer
architecture. The focus of the class is to understand and implement the self-attention mechanism in Pytorch.
For this, we will use an annotated version of Karpathy’s minGPT code (https://github.com/karpathy/
minGPT).

4.2 Before Diving into Transformers

Before diving into transformers, we would like to introduce two important details of defining and training
transformers.

4.2.1 Positional Encoding

Different from models with recurrence/convolution, positional information is not encoded in Transformers.
Therefore, |[Vaswani et al.| (2017) include the positional embedding as part of the input to Transformers. The
most popular way to compute the positional embedding (PE) is to use the sinusoidal expressed as

pos

PE(pOS,Zi) = Sin( 100002i/dmadel 7 (41)
_ pos
PE (pos2it1) = cos(m), (4.2)

where pos is the position and i is the dimension.

4.2.2 Tokenization

Transformers operate on sequences of input. In the case of natural language, these sequences could be whole
words, single characters, or something in-between. The process of breaking a text string into these smaller
pieces is called tokenization. Most transformers use subword tokenization, which operates on the idea that
frequently occurring words should occur as single units, while rare words should be split into smaller pieces
that occur more frequently. The most widespread subword tokenization algorithm is byte pair encoding (BPE)
(Sennrich et al.,|2016), which allows any string to be represented as a sequence of pieces from a finite vocabulary.

Exercise 4.1 Tokenization
Let’s see how three commonly-used tokenization techniques can be applied in practice.

1. Run the word-based tokenizer and try out different text:

Authors in alphabetical order: Goncalo Melo, Grig Vardayan, Hovhanes Tamoyan, Israfel Salazar, Li Haau-Sing, Roberto Dessi,
Venelin Kovachev
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text = "I travelled to Lisbon in July to attend an NLP summer school"

text.split ()

2. Run the character-based tokenizer and try out different different text. Can you imagine what problems character-
level tokenizers pose to NLP models?

text = "I will travel to Lisbon in July..."
tokenized = [c c teXt c [", "/ "; "/ ": "/ mir ", n '[ ", ”?"]]

(tokenized)

3. Run the BPE (byte-pair encoding) tokenizer. Can you guess which words will be split subwords and which ones
won’t?

Ixmls.transformers.bpe BPETokenizer

tokenizer = BPETokenizer ()

"

sentence = "Your drawing is charmingly anachronistic.
tokenizer.encoder.encode_and_show_work (sentence)

4.3 Transformer Architectures

The basic building block of the Transformer combines a large feed-forward network with a multi-head self-
attention layer. We have seen feed-forward models in previous days and we will focus here on multi-head
self-attention. Refer to previous days for details on the basics of feed-forward models. There are three main
varieties of transformer model:

1. Encoders: map a sequence of T observations, e.g. some word or sub-word units xj - - - x7 to a hidden
representation of size H, yielding a matrix of embeddings of size (H, T). These contextual embeddings
can be combined with a task-specific prediction layer, as in BERT.

2. Decoders: given a sequence of T — 1 observations, e.g. some word or sub-word units x .7 = x1 - - - x7_1,
predict the next word xt. This architecture is the basis of many common large language models, such as
GPT.

3. Encoder-Decoders: map a sequence x to another sequence y, which might be of a different length. For
this, first x is processed with an Encoder. Then y is processed with a modified Decoder which uses a cross-
attention mechanism to compute attention between x and y. Encoder-Decoder models are commonly
used for machine translation, as well as in some general-purpose language models such as T5.

Although these models are used for different purposes, the architectures are very similar. In these exercises,
we focus first on the Encoder and then explain the other two.

4.4 Attention

Attention mechanisms have become a crucial component in effective sequence modeling across different tasks
like machine translation (Bahdanau et al.| 2014), and they predate transformers by several years. The gen-
eral idea of an attention mechanism is that it assigns scores to the hidden states of a model so that it knows
where to focus. Figure [4.1| shows how an attention mechanism can decide which source words to focus on
when generating each target word. In the left image, we can clearly see that the attention of the token ‘cat’” is
specifically directed towards the token ‘gato’, which corresponds to its accurate translation. Similarly, in the
right image, the word ‘it’ is attentively aligned with the token ‘gato’” once again. Transformers Vaswani et al.
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Figure 4.1: Encoder-Decoder Attention. Attention distributions were generated with Multilingual BERT (De-
vlin et al.| 2018).

(2017) use several varieties of attention, most famously self-attention, in which scores are produced to model
the relationship between all pairs of tokens in a single sequence (see Figure [4.2).

In order to understand why attention mechanisms are such powerful tools, it is helpful to understand the
architectural limitations of models like RNNs. In an RNN, the hidden state k; has a direct connection to the
previous hidden state /;_1, but not from all hidden states elsewhere in the sequence. This leads to information
loss because all relevant information at time t needs to be put into a single fixed-dimensionality vector —
information from several steps in the past may be lost, so these models tend to have a recency bias. This can
be a problem in natural language applications because there are often complex relationships that depend on
words far away in the sequence, as in the example in Figure For a human being, the question of whether
the pronoun “it” refers to the cat or the tree is relatively simple due to our prior knowledge about cats and
trees. With our understanding of these concepts, we can confidently determine the intended reference of the
word “it.” For a model, however, discerning the referent of the pronoun “it” — whether it is the cat or the tree
— may be more of a challenge because “the tree” occurred more recently. An attention mechanism enables a
model to access all hidden states /1 - - - T, not just the most recent.

Now let’s explore each building block of the Transformer architecture and examine how the Attention
mechanism fits in this.

4.5 Encoder Architecture

In the original paper for transformers (Vaswani et al.}2017), a “sub-layer” is formed by either a Feed-Forward
(FF) or Multi-Head Attention MHA (or other named sub — blocks) followed by a sequence of operations. In
this section, we begin by explaining the encoder architecture. Note that the notation of “sub-layer” also applies
to the following sections.

4.5.1 Simplified Encoder Architecture

The encoder architecture can be succinctly described as stacking a number of N blocks on top of each other
combining a FF and MHA sub-blocks. A single block is defined as
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Figure 4.2: Self-Attention

The cat didn't climb the tree because it was too scared.

Figure 4.3: An example illustration

"1 = FE((MHA(e")). (4.3)

The input to the first block e° is the sum of position P and non-contextual embeddings E of the input.
Assuming xq - - - xT is a sequence of integers (indices to a vocabulary of V symbols) we have that

e)=E-1,,+P-1; for t=1---T (4.4)

where 1y, and 1; are indicators, i.e. one-hot, vectors for the token content (vocabulary symbol) and the
token position. E € RV is the non-contextual embedding matrix for each symbol in the vocabulary and
PH*T is the position embedding matrix, where T — 1 is the furthest position supported. See Figure for the
construction of the input of the first block.

m | Ex) || PO | m

~_

[Tl
Figure 4.4: Construction of the input of the t-th token in layer ¢

The feed-forward (FF) is given by:

FF(z) = W? - gelu(W! - z) (4.5)

with weight matrices W? € RH*# and W! € R*"*H  that expand and contract the hidden dimension H.
Attention consists of three matrices: Query (Q), Key (K), and Value (V). To obtain Q, K, and V, we perform
a linear projection of the input using corresponding matrices that are learned during the training process.
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The concept of Query, Key, and Value is similar to retrieval systems. When searching for an article on the
web using a specific Query, the search engine maps the Query against a set of Keys or titles associated with
candidate results in their database. It then presents the best-matched articles or Values to the user. In concrete
terms, we can think of it as a weighted modification of a query Q, given some context K and V. There are two
cases to consider:

1. Cross-Attention: The query Q = W€ - z, is a query from one sequence, and K = WK . z.and V = WV - z
are the context from another sequence.

2. Self-Attention: The query Q = WQ - z is a query from one sequence, and K = WK .zand V = WV - z are
the context from the same sequence.

In Figure we present the computation for K, Q, and V in a cross-attention scenario with a given input z,
and a context z.. Notice that this case is more general, for self-attention, we have z; = z; = z.

W K
Zc K
X =
[T E] [T, H
[E, H]
WV
Zc
X =
[T.E] [T, H
[E, H]
Query
wQ
Zq Q
X =
[Q E] [Q, H]

[E, H]

Figure 4.5: Query, Key, and Value projections from a given query z,, and context z.

Then, to perform attention, we follow these steps:

1. Measure Similarity: We calculate the similarity between, Query and Key. This is often done by taking the
dot product of the two matrices.

2. Find Maximum Match: We extract the key with the maximum match. This means identifying the Key
that has the highest similarity with the Query.

3. Retrieve Value: Once we have the Key with the maximum match, we can retrieve the corresponding
Value associated with that Key.

This simple 3-step process is in fact the Attention mechanism. Where we are looking for the best matching
tokens for the source sequence in the target sequence. Let’s compute the cross-attention score step-by-step. The
Key and Query matrices are multiplied by each other and normalized by a constant value % W9z, (WKz.) Tor
%QKT. The A value is usually chosen to be the square root of the dimension of the key matrices. This leads to
having more stable gradients.

Then pass the result through a softmax operation. The Softmax normalizes the scores so they’re all positive
and add up to 1. In other words, extracts a distribution of relative scores from a given token for each token in
the input sequence.
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After this multiply the output by the Value matrix: softmax (% WQz (WKz) T) WV -z or simply V - softmax (% QKT) .
1= i—
See Figure

Q.H

AttEHtion(Q,K,V) = softmax ( T )x

Figure 4.6: The attention mechanism

The Multi-Head Attention (MHA) enhances the Attention layer in two ways: it allows the model to focus on
different positions within the input, enabling a better understanding of pronoun references; and allowing pro-
jection of input embeddings into distinct representation subspaces, thereby improving overall performance.
Finally getting the following mathematical form for the MHA:

softmax (%Wle (Wle)T) WY -z

i—
TwQs (WK T) . WY .
MHA(z) = W° sofltinax(AWZZ(sz)) Wy -z

sof}gnax (%Wgz (Wgz)T) WY -z

where we have D attention heads. Each head contracts the hidden dimension WK, W, WV € RE*H into
a space of size E which is equal to H/D (this has practical implementation consequences, H and D should be
set properly). Outputs of all heads are concatenated and projected again with W° € R"*H. Please note that
the dimension of WV can be different in the general case. The above-mentioned dimensions are correct for the
cases when the source and target sequences have equal lengths, which is mostly not the case.

4 2\
- Add and Normalize
A A P A
L Feed Forward(FF) ) (  Feed Forward(FF) )
e L S A A
e Add and Normalize
' A A A
C Self-Attention (MHA)
NS e f
e, e,0 0

Figure 4.7: Encoder block

4.5.2 Adding Dropout, Residuals, and Layer Normalization

To complete the “sub-layer”, a dropout followed by a residual connection and a layer normalization is applied
to input z that has been passed through a sub — block, where a sub —block € {FF, MHA}. Together, we can
express the function as

C(x) = layernorm(residual(dropout(sublayer(z)), z) (4.6)

where sublayer € {FF, MHA}.
Specifically, we have

* dropout(x) = r x x where r; ~ Bernoulli(p) and * refers to element-wise multiplicatiorﬂ

e residual(x,z) = x + z, and

Note that the default p is 0.1.

69



. _ _x—E(x) . .
layernorm(x) o Te * v + B where E(x) and Var(x) are computed among dimensions other than
the dimension for the batch]

After incorporating all of these subcomponents, we obtain the final Encoder block, as illustrated in Figure

A7

4.6 Decoder Architecture

This is identical to the Encoder architecture with two differences
1. We feed if a partial sequence x~; and take the last output h;_; as the hidden vector for x;
2. We mask every head of MHA to prevent any value of time p to depend on values of > p

The implementation of training realizes 1) by masking input partial sequence x; and hidden units from
the corresponding positions with an attention mask. This attention mask is also applied during inference time.

é )

- Add and Normalize
A A ] ) A
N\ / ™\
- Feed Forward(FF) ) L Feed Forward(FF) )
S 7 S Y.
--> Add and Normalize
. A A A
h >< Encoder-Decoder Attention (MHA) >
el L. N A A
e Add and Normalize
/ 4 A A
| < Self-Attention (MHA) )
NS SO— | S r
elo ezo eT0

Figure 4.8: Decoder block

Once all these subcomponents are integrated, we achieve the final Decoder block, which is depicted in

Figure

4.7 Encoder-Decoder Architecture

In the Encoder-Decoder Architecture, the encoder is the same as section Therefore, we have the encoded
embeddings as eV = Encoder(x).

The decoder in the Encoder-Decoder Architecture is a little bit different than section [4.6] Each layer of the
decoder will include one more Cross-Multi-Head Attention (CMHA) sub-layer, and the order of sub-layers in
a decoder layer will be MHA-CMHA-FF, i.e.

d"t! = FE((CMHA(eN, MHA(d™))). (4.7)

Specifically, the query matrix is computed from the layer below it, while the key and value matrix are
computed from eV, which can be expressed as

softmax (WEMHA(@™) (WEeN)") - Wy - eN
i

1R m K,N\T\ V. ,N

CMHA (e¥, MHA(d™)) = W° - softmax (WS MHA(") (WEe)") - Wy - e

softmax (WS MHA(a") (WeN)") - W - eN
i—

By combining N blocks of Encoder and Decoder, we obtain the complete view of the Transformer architec-
ture, as illustrated in Figure

Note that the default € is 1e — 5. 7y and B are learnable affine parameters if we want to learn, otherwise set to 1 and 0
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Figure 4.9: Encoder-Decoder Architecture

Exercise 4.2 Cross Multi-Head Attention & Multi-Head Attention Now let’s implement our own Attention mechanism,
to that end let’s:

1. Complete the cross_attention function. Given two input sequences S1 and Sy and the transformation weights
Wq, Wk, and Wy You need to implement the following:
(a) Calculate the query, key, and value projections using linear transformations.
(b) Compute the attention scores by performing the dot product between the query and key tensors.
(c) Apply softmax activation to the attention scores to obtain the attention weights.
(d) Multiply the attention weights with the value tensor to get the attended values.

(e) Return the attended values.

torch
torch.nn.functional F

cross_attention (S1, S2, W_Q, W_K, W_V):
## Your code here
attended_values

2. Complete the CausalSelfAttention class. First, you should create linear projections query_proJj, key proJ
and value_proi.

math
torch.nn nn

CausalSelfAttention (nn.Module) :

__init_(self, config):
super().__init__ ()

# Initialize layers and parameters
self.hidden_size = config.n_embd
self.num_heads = config.n_head

# TODO: Create the linear projections
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self.output_proj = nn.Linear (config.n_embd, config.n_embd)

self.attn_dropout = nn.Dropout (config.attn_pdrop)
self.resid_dropout = nn.Dropout (config.resid_pdrop)
self.register_buffer/(

"pias",

torch.tril (torch.ones (config.block_size, config.block_size)).view(
1, 1, config.block size, config.block_ _size))

Then apply query _proj, key_projand value_proj to split input into query, key, and value tensors:

forward (self, x: torch.Tensor) —> torch.Tensor:
B, T, C = x.size()

# TODO: Split input into query, key, and value tensors

# Reshape and transpose tensors for multi-head computation
query = query.view(B, T, self.num_heads,
self.hidden_size // self.num _heads) .transpose (1, 2)
key = key.view(B, T, self.num heads,
self.hidden_size // self.num_heads) .transpose (1, 2)
value = value.view(B, T, self.num heads,
self.hidden_size // self.num _heads) .transpose (1, 2)

Then compute the attention scores. Note that the shape of scores should be (B, num_heads, T, T)

# TODO: Compute attention scores

# Apply a causal mask to restrict attention to the left in the input

sequence
mask = self.bias([:, :, :T, :T]
scores = scores.masked fill (mask == 0, float('-inf'))

Finally, apply soft-max activation and multiply attention weights with values to get attended values:

# TODO: Apply softmax activation to get attention weights

# TODO: Multiply attention weights with values to get attended values
# Transpose and reshape attended values to restore original shape
attended_values = attended_values.transpose(l, 2).contiguous().view(

B, T, C)

# Apply output projection and dropout
output = self.resid _dropout (self.output_proj(attended_values))

output

4.8 Training different Transformers
We have introduced different architectures of transformers and will present different variants of transformers

that are trained with different objectives, and thus applied to different downstream tasks. We briefly introduce
all these transformers and provide references so you can read these papers if you are interested.
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4.8.1 Training with Encoders

Encoder models solely utilize the encoder component of a Transformer model. In each step, the attention
layers have the ability to consider all the words present in the original sentence. These models are known as
"auto-encoding models” and are recognized for their ‘bi-directional” attention mechanism.

The pretraining of these models typically involves manipulating a given sentence, often by obscuring ran-
dom words and assigning the model the task of identifying or reconstructing the original sentence. This ob-
jective is commonly referred to as Masked Language Modeling (MLM), and models pre-trained with this
objective are known as Masked Language Models.

For a text sequence x, the BERT model first constructs a corrupted version X. Let the masked tokens be x.
The training objective is to reconstruct x from %:

a exp(Hp(%){ e(xr))
maxglogPy(x ;mtlogpg x¢|%) Zlm gZx,exp(Hg( e (4.8)

Where the ~ indicates that all X elements are independent (seperately reconstructed), m; indicates weather
or not x; is masked (1-masked, 0-not), Hy is a Transformer that maps a sequence x of length T and contains info-
mation about the context on both sides Hy(X) = [Hy(x)1, Hg(x)2, ...Hg(x)7], and e(x) denotes the embedding
of x.

Encoder models excel in tasks that demand a comprehensive understanding of the entire sentence. These
tasks include sentence classification, word classification tasks e.g. named entity recognition, and extractive
question answering. Widely used representatives of this model family include BERT |Devlin et al|(2018) and
RoBERTa [Liu et al.|(2019).

BERT [Devlin et al.| (2018) is trained on MLM(Masked Language Modeling) and NSP(Next Sentence Predic-
tion) objectives. In the MLM objective, 15% of the input tokens are selected. Among these selected tokens:

* 80% of the time, the mask token is inserted in place of the original token.
* 10% of the time, a random token is inserted in place of the original token.
* 10% of the time, the original token remains unchanged.

The NSP objective is applied to pairs of sentences, A and B, taken from the training set. In 50% of the cases,
sentence B directly follows sentence A in the input, while in other cases, the pairs are randomly selected. The
objective is to perform binary classification and predict whether sentence B follows sentence A or not.

RoBERTa [Liu et al.|(2019) builds upon BERT’s pre-training by addressing its perceived undertraining. It
introduces the following modifications:

* Longer and larger-scale training: RoBERTa trains the model for an extended period using larger batches,
more data, and longer sequences.

* Removal of NSP objective: The next sentence prediction (INSP) objective, present in BERT, is eliminated
in RoBERTa.

¢ Dynamic masking: RoBERTa employs dynamic masking by duplicating the training data ten times and
applying different mask patterns to each sample. This contrasts with BERT’s static masking, where a
fixed mask is used for each sample.

These modifications aim to enhance RoBERTa’s pre-training performance and overall language understanding
capabilities.
4.8.2 Training with Decoders

Decoder-only or Autoregressive modeling performs pretraining by maximizing the likelihood under the for-
ward autoregressive factorization:

exp(ho(xi:—1)Te(xr))
maxglogPy( logPy(x¢|x
plogPa(x tzl §Po(xt|x<t) Z Zx,exp(hg(xu 1)Te(xr))

Where the hy(x;.4—1) is the context representation produced by the neural model, and it contains informa-
tion (conditioned) about the tokens up to position ¢, and e(x¢) is the embedding of a token x;.
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A Decoder-only or Autoregressive model operates differently compared to Encoder-only or Autoencoder
model by focusing on density estimation rather than reconstructing corrupted input. These models aim to
estimate probability distributions, which limits their ability to capture bidirectional context. As a result, they
are restricted to uni-directional processing.

GPTs. The class of GPTs is a series of pre-trained decoder-only transformers. Models are pre-trained to
perform the next token prediction with the Cross-Entropy criterion. Since the release of GPT-1 (Radford et al.|
2018), GPTs are being trained with more parameters and training data, with GPT-2 (Radford et al., [2019),
GPT-3 (Brown et al., 2020b), InstructGPT (Ouyang et al., 2022) and GPT-4 (OpenAl, [2023) being subsequently
released. Note that since the release of InstructGPT (Ouyang et al., 2022), this class of language models has
been trained with reinforcement learning with human feedback (Bai et al., 2022), which enables the model to
manifest interesting behaviors that you see when using ChatGPT.

4.8.3 Training with Encoder-Decoder

To leverage the strengths of both Encoder-only and Decoder-only models, the concept of Encoder-Decoder
models was introduced. While previous methods effectively captured bidirectional information for text gen-
eration, they had certain limitations in terms of contextual token representations. One common approach
involved concatenating the left-to-right and right-to-left representations |Peters et al.| (2018).

Encoder-Decoder models aim to overcome these limitations by combining the advantages of both ap-
proaches. These models can effectively capture bidirectional information while maintaining robust contextual
representations for each token. By leveraging the strengths of both encoders and decoders, Encoder-Decoder
models offer enhanced capabilities for various natural language processing tasks, including text generation.

Commonly employed members of this model family include BART [Lewis et al.|(2020) and T5 [Ratfel et al.
(2020), which have gained significant popularity in the field.

BART. BART Lewis et al|(2020) an encoder-decoder model pre-trained on five tasks injecting noises into the
input text: i) token masking (same as BERT |Devlin et al.|(2018)), ii) token deletion, iii) text infilling by replacing
sampled input spans with single masks, iv) sentence permutation, and v) document rotation. The powerful
pre-trained denoising autoencoder is commonly used in generation tasks.

T5. T5 (Raffel et al., 2020) utilizes a text-to-text methodology. In this approach, various tasks like translation,
question answering, and classification are transformed into a unified format. The model is provided with input
text and trained to generate the corresponding output text. To achieve this, a task-specific prefix(instruction)
is added to the input sequence, and the model is pre-trained to produce outputs specific to each task.

Exercise 4.3 Training Transformers

Let’s delve into practical training of a Transformer model to gain hands-on experience. Our initial step will involve
creating a Decoder-based model (GPT-2|Radford et al.|(2019)) and training it on a modest dataset. Once this is completed,
we can visualize the attention mechanism before and after the training process. Finally, we can compare the performance
of the trained model during inference with that of the smaller trained model.

Exercise 4.4 Training a Weather Prediction Model Using Autoregressive Transformer.

In this exercise, we will be working with a dummy weather dataset comprising sequences of weather observations
and their corresponding states. The objective is to train a compact autoregressive transformer model that can predict the
weather state based on previous observations. Let’s begin by importing the required modules and classes, and setting a
seed value to ensure consistent output every time we run the file.

random
time

numpy np
torch
torch.utils.data.dataloader DataLoader

random. seed (42)

Ixmls.transformers.bpe BPETokenizer
Ixmls.transformers.dataset WeatherDataset
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Ixmls.transformers.model GPT
lxmls.transformers.trainer Trainer
Ilxmls.transformers.utils set__seed

To begin, we initialize the training dataset, which comprises sequences of weather observations along with their
corresponding states. These sequences are transformed into indices and then concatenated to create the input and output
sequences for the transformer model. For more information on this, refer to: ”“Ixmls/transformers/dataset.py”.

fixed proba = {}
fixed proba["initial"] = [0.5, 0.3, 0.2]
fixed_proba["transition"] = [[0.5, 0.5, 0], [0, 0.5, 0.5], [0.5, 0, 0.5]]
fixed _proba["emission"] = [
[0.5, o, 0.2, 0, 0.3],
(o, 0.5, 0.4, 0, 0.1],
(o, o, 0.1, 0.5, 0.4],

Let’s print an example instance of the dataset.

train _dataset = WeatherDataset ("train", proba=fixed_proba)
test_dataset = WeatherDataset ("test", proba=train_dataset.proba)
X, y = train_dataset[0]

("Sampling from the dataset:")

(f"Input: {train_dataset.decode_obs (x.tolist () [:6])}")
(f"Labels: {train_dataset.decode_st (y.tolist()[5:])}")
("-" % 50)

("Tokenized sequences:")

(f"Input: {x.tolist()}")

(f"Labels: {y.tolist()}")

Moving forward, we construct a model using the default configuration for the GPT model, which encompasses pa-
rameters defining the model’s size and structure. In this case, we employ a compact variant known as GPT Nano.

model_config = GPT.get_default_config()

model_config.model_type = "gpt-nano"
model_config.vocab_size = train_dataset.get_vocab_size()
model_config.block_size = train_dataset.get_block_size()

model = GPT (model_config)

(model_config)

To facilitate the training of our model, we instantiate a Trainer object. The Trainer manages various aspects of the
training process, such as configuring the learning rate, specifying the maximum number of iterations, and determining
the number of workers for data loading. We initialize the Trainer with the model, training dataset, and validation dataset.

train config = Trainer.get_default_config()
train_config.learning_rate = (
5e-4 # The model we're using is so small that we can go a bit faster
)
train _config.max_iters = 2000
train_config.num _workers = 0
train config.device = "mps"
trainer = Trainer (train_config, model, train _dataset)

(train_config)
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With all these components in position, we are fully prepared to train our model using the weather dataset and leverage
the acquired patterns to generate predictions.

batch_end callback (trainer) :
trainer.iter _num % 100 == 0:
(
f"iter dt {trainer.iter_dt  1000:.2f}ms; iter {trainer.iter_num}: train 1loss
{trainer.loss.item():.5f}"

trainer.set_callback ("on_batch_end", batch_end callback)

start_time = time.time()
trainer.run/()

end _time = time.time()

elapsed _time = end _time - start_time

# Print the training time
("Training time: {:.2f} seconds".format (elapsed_time))

Now, let’s visualize the attention heads of our trained model. To do this, we need to install the HF transformers and
bertviz packages. You can install them by running the following command: “pip install transformers bertviz”.

transformers BertTokenizer, BertModel
bertviz head_view

# Define a sample input text
text = "I will go for a run and will jump into a lake."

# Instantiate the BERT tokenizer and model
tokenizer = BertTokenizer.from pretrained("bert-base-uncased")
model = BertModel.from pretrained("bert-base-uncased")

# Tokenize the input text
tokens = tokenizer.tokenize (text)

# Convert tokens to token IDs
token_ids = tokenizer.convert_tokens_to_ids (tokens)

# Create attention mask
attention mask = [1] * len(token_ids)

# Convert token IDs and attention mask to tensors
input_ids = torch.tensor ([token_ids])
attention_mask = torch.tensor ([attention_mask])

# Generate the transformer output
outputs = model (input_ids, attention_mask=attention_mask, output_attentions=True)

head_view (outputs.attentions, tokens=tokens)

Exercise 4.5 Promoting a GPT-2 model Now that we have trained our own Transformer model and gained some under-
standing of its functioning, let’s explore a larger pre-trained model that has been trained on a vast amount of natural data.
By doing so, we can experience generating output that closely resembles human-like responses.

model_type = "gpt2"
device = "mps"

model = GPT.from pretrained(model_type)

# move model to the device (GPU if available)
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# set to eval mode to avoid gradient accumulation
model.to (device)
model.eval ()

# Random prompt, uses pooling
i range (5) :
set_seed (42)
model.prompt ("Alan Turing, the", 50, 3)

# Deterministic prompt, does NOT use pooling
1 range (5) :
model.prompt_topK("Alan Turing, the", 50, 3)

Get ready to embark on an intriguing journey by playing with the input prompt and witnessing the fascinating and
captivating outputs that await you!
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Day 5

Multimodal Models

5.1 Today’s assignment

Today’s class delves into multimodal architectures, focusing on how models learn the relationships between
different types of data, including images and text. More specifically, we will explore CLIP (Contrastive
Language-Image Pre-Training) [Radford et al.|(2021): a foundational model that learns visual concepts from
natural language supervision through a shared embedding space. CLIP’s shared embedding space has heav-
ily influenced modern large-scale multimodal systems, stemming from its initial application to models like
DALL-E. As a means of encoding textual prompts and conditioning image synthesis, it enables text-driven
image generation and manipulation, while also facilitating the ranking of generative outputs.

On that note, the primary focus of this class is to complete this lab’s notebook (adapted from a HuggingFace
PyTorch implementation of CLIP) sustaining the following milestones: (i) understand CLIP’s dual-encoder ar-
chitecture and contrastive learning, (ii) encode images and captions into the shared embedding space of CLIP,
(iii) implement a zero-shot rescoring pipeline by sampling candidate sentences, computing CLIP similarity
scores, and selecting the best match, and (iv) visualizing resulting image-text distances of a Gemma Vision-
Language Model (VLM) and how cross-modal tokenization and convolution play a role.

By the end of this session, you’ll have hands-on experience with the core mechanics that make CLIP and
many other multimodal systems so powerful.

5.2 Before Diving into Multimodal Models

Before building our model, it is essential first to understand the core concepts that make multimodal learning
possible.

5.2.1 Image Tokenization: From Pixels to Patches

Transformers operate on sequences of inputs. In the case of natural language, as we have seen in the previous
day, this involves breaking text into smaller pieces through tokenization. A similar concept is required for
images: we partition a grid of pixels into a sequence of patches and feed them into a Vision Transformer
(ViT) [Dosovitskiy et al.| (2021). This process, visually demonstrated in Figure 5.1, works through the following
sequence of operations:

1. Patch Extraction and Flatenning: With an input image x € R"*W*C (where H and W are the height and
width of the image in pixels, respectively, and C is the number of color channels per pixel), split it into a
sequence of flattened non-overlapping patches (x, € RN* (P 2‘C)), where:

H W
N=35x3 (.1)

is the resulting number of patches, each of size P x P (e.g., 16 x 16 pixels), and where each flattened
patch is a one-dimensional vector x,, where:

T P2.C
xp = [P111, P12 P113 P121, P122, P123 ---] € R (5.2)

These are then treated as “tokens”, similarly to word tokens of standard transformers;
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2. Linear Projection to Embeddings: Apply a learnable linear layer (E € R(P?-C)xD ) to each flattened patch
to project each patch into a D-dimensional embedding space, such that:

x](gi) = x;i)E e RP (5.3)

3. Class Token and Positional Embeddings: Prepend a learnable class embedding (28 = Xgass € RD),
whose final state (z?) will represent the entire image, and, just like text-based transformers, add a learn-
able one-dimensional positional embedding (Ep,s € R(N+1)xD) to retain spatial information about where
each patch was located in the original image, such that:

1 2 N
20 = [xcluss;xg7 )E; x;(7 )E;...; x,(j )E] + Epos (5.4)

4. Transformer Encoder: Feed the previous sequence into a standard transformer encoder of L layers, en-
abling the self-attention mechanism to weigh the importance of different parts of the image relative to

one another.
MLP
[Class ]—[ Head ]

Transformer Encoder

pmmwaﬁ¢¢¢¢¢++¢

Linear Projection of Flattened Patches
Ao ‘ |

Figure 5.1: An illustration of the image tokenization process used in ViT. An image is split into fixed-size
patches, which are then linearly projected and combined with positional embeddings to form a sequence of
input vectors for the transformer encoder.

5.2.2 Contrastive Learning

Contrastive learning, as the name suggests, is a training technique where contrastive data samples are evalu-
ated against each other as a means of training a model to learn common and distinct attributes among samples
of different classes (e.g., distinguishing a dog from a cat) (Chen et al.|(2020). In doing so, this technique tunes
a model in such a way that allows it to encode embeddings where similar classes are close to one another in
the embedding space, as opposed to distinct classes, which have a significant enough distance that allows the
model to distinguish them.

More specifically, data samples are often partitioned into three distinct categories: (i) anchors, representing
a base class for contrast, (ii) positives, with an equal class to that of the anchor, and (iii) negatives, representing
a distinct class to that of the anchor.

On that note, an encoder is trained via contrastive learning such that embeddings of anchor and positive
samples are close together, in the embedding space, as opposed to negative samples, which should be far
apart. This is done so by tuning the encoder through a maximization or minimization of distance functions
(e.g., Euclidean distance or cosine similarity) applied to the anchor and multiple positive samples, and the
anchor and multiple negative samples, respectively, as illustrated in Figure and described through the
following formalisms:
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. Encoder and Embedding Definition: Given an input sample I and an encoder 6§, the latter produces a
d-dimensional embedding from the former:

f=0() ¢ R* (5.5)

. Anchor, Positive, and Negative Samples Definition:

* Anchor I, i =1,...,K: Base samples;
e Positive Il-+ ,i=1,...,K: Samples of the same class or augmented views of the anchors;

* Negative I ]7, j=1,...,K: Samples from different classes.

. Embedding Normalization: For the proper application of a distance function, each embedding must be
normalized to unit norm:

p_
T=0A 50

. Distance Function: Compute the similarity measure via the distance function (cosine similarity is equiv-
alent to the dot product):

S(u,0) =u'v (5.7)

. Contrastive Loss: Provided an anchor I?, with a corresponding positive I;", and negatives {1 i) }]I‘<:1' the
loss for the anchor I?, where T > 0 is a temperature hyperparameter, is:

£+
£ = —log exp(3(fi, £;")/7) (5.8)

exp(3(fi, f;7)/7) + Ty exp (8(fi f;)/7)

. Overall Loss: For a batch of N anchors, the overall loss is:

Ly
==Y ¢ (5.9)
N i=1

Distance
Function

(%)

fr=60%

Minimize

Encoder

Distance
Function

(47D

—
6
| —

fe=00%

Maximize

fm=0607)

Negative: I~

Figure 5.2: A high-level illustration of the contrastive learning framework, where an encoder is trained to
minimize and maximize the distance function between an anchor and its contrastive positive and negative
samples, respectively. Here, the positive sample is a transformation of the original image.

Finally, it is worth mentioning the role of data augmentation in such frameworks. Positive samples are

either images containing data that fits within the same class as the anchor or augmentations of the anchor (i.e.,
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multiple patches and transformations), ranging from color jittering and rotation to noise injection and random
affine transformations. This is done to ensure that the model does not conform to unwanted patterns (e.g.,
pixel-level or rotation-specific artifacts), but instead learns the core features that characterize these classes (e.g.,
shapes, contours, textures, and spatial configurations), which in turn allows for proper generalization. After
training, the resulting encoder should be capable of accurately distinguishing between similar and dissimilar
classes, as illustrated in Figure

Figure 5.3: An illustration of the embedding space of a properly tuned encoder that sets distinct classes far
apart, while shortening the distance of similar samples as per contrastive learning. Here, the black data point
serves as the anchor, the green data point as the positive sample, and the red data point as the negative sample.
Note the difference in distance from the anchor to the positive and negative samples.

5.3 Multimodal Architectures

The core building block of modern multimodal systems often involves combining powerful pre-trained uni-
modal models. Unlike standard Transformers, which operate on a single sequence of tokens, multimodal
models must compare fundamentally different data structures (e.g., image patches and text tokens). The so-
lution is to create a “common language” known as the shared embedding space. This is a high-dimensional
vector space where both images and text can be represented. As such, the goal is to train encoders that map
semantically similar image-text pairs close to each other in this space. There are three main approaches:

1. Dual Encoders: This architecture, popularized by CLIP, uses two separate encoders—one for each modal-
ity (a ViT for images and a standard Transformer for language). The encoders are trained jointly with the
contrastive learning to align their output embedding spaces. This design is highly efficient for retrieval
tasks.

2. Fusion Encoders: These models use a single Transformer encoder that processes the combined inputs
from multiple modalities. This enables “cross-attention” between image patches and text tokens at a
much deeper level, allowing for more complex reasoning. Models like VIiLT and VisualBERT follow this
pattern.

3. Encoder-Decoders: These models are used for generative tasks. An encoder processes one modality
(e.g., an image), and a decoder uses that representation to generate output in another modality (e.g., a
text caption). Models like BLIP and Flamingo are powerful examples used for image captioning and
visual question answering.
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Even though these models are used for different purposes, their architectures are very similar. Today’s exer-
cises, however, will focus on the dual encoder architecture, as it provides the clearest illustration of cross-modal
alignment.

5.3.1 CLIP:

As previously detailed, CLIP resorts to a dual encoder architecture to encode images and text in a shared
embedding space through a ViT and a standard Transformer, respectively Radford et al|(2021). The idea is to
train this model—via contrastive learning—in such a way that maximizes the similarity of the encoded image-
text pairs, while minimizing the similarity of disparate encoded image-text pairs (i.e., the embedding of the
sentence “a gray british shorthair cat” should be similar to the embedding of an image of a cat, as opposed
to that of a dog). In doing so, such allows the establishment of relationships between image-text pairs that
serve a myriad of purposes, ranging from image classification to more sophisticated integrations in generative
scenarios. One interesting aspect about CLIP is its capability of generalizing to tasks it was not trained on (i.e.,
zero-shot classification)—a surprising example being CLIP’s performance matching the accuracy-level of the
famous ResNet-50 without actually training on the data which ResNet-50 trained on.

More specifically, focusing on the base case for image classification, CLIP takes a given number of text
embeddings, via a standard Transformer—usually text labels scraped from large datasets of image captions
from the web—, followed by multiple image embeddings, via a ViT, matching each of the previous labels.
Next, the dot product (i.e., cosine similarity) is applied to each possible image-text embedding pair. Thus,
the model is iteratively trained in such a way that matching image-text embeddings stay close together in the
embedding space and dissimilar pairs far apart, as per contrastive learning, as illustrated in Figure

A goofy-looking
photobombing cat

Text
Encoder

iz A Ty
I I1 T1 /1'T2 I1 T4
I, I+ Ty /2 . Tz I~ Ty
Image |
Encoder
In In-Ty In-T, In-Ty

Figure 5.4: An illustration of CLIP’s dual encoder architecture. Images and texts are embedded and individu-
ally paired with one another via a distance function to rank for similarity. The model is then iteratively tuned
to achieve proper distance values and enable accurate classification (the values of the matrix’s diagonal should
be minimized and the remaining cells maximized).

This last step is done symmetrically—by performing a loss through both ways (i.e., text-to-image and
image-to-text) which is later averaged into one component—to ensure proper alignment between both modal-
ities. Since CLIP learns broad vision-language alignments from large-scale web data, it can be applied in
zero-shot fashion to downstream tasks without further fine-tuning, simply by filling out a default prompt of
the form “a photo of a {class}”, where {class}’ is replaced by the label whose text embedding is most similar
to the embedding of the image (see Figure[5.5).

Formally speaking, CLIP uses a dual-encoder architecture to map images and text into a shared d-dimensional
embedding space, and trains via a symmetric contrastive objective as per the following formalisms:

1. Encoders and Embeddings Definition: Given an image domain I and a text domain T, where f; = 6(I;)
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and g; = ¢(T;), we have:

0:1 -RY, ¢:T— R (5.10)

2. Embedding Normalization: Each embedding must be normalized to unit form for proper application of
the distance function:

2 fi . Qi
i 5.11
=T 8 Tl G.11)

3. Distance Function: Compute the distance between each image-text embedding pair via cosine similarity:
Sii=1fi"§ (5.12)

4. Symmetric Contrastive Loss: For a batch of N matched image-text pairs (I;, T;), we have a loss function
for each direction (i.e., image-to-text and text-to-image), together with the total loss:

1 exp(Jii)

Lpr=—= ) log , (5.13)
N ; L exp(d;)
1 N ex (5)

LTZI = _N 2 IOg % (514)

UL exp(sy)

1
L= 3 (Lot + L121) (5.15)

5. Zero-Shot Classification: Given an image I and a set of K candidate class names ck, form prompts T =
“A photo of a ¢;”, normalize each prompt to unit norm, and compute the probability of class k matching
image I:

ply =k 1) = 22U 8

== oV (5.16)
iexp(f-g)

cat
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dog A photo of a {class} _’w

Image
Encoder
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Iy 1T, ly- T I+ Ty

A photo of a jaguar

Figure 5.5: An illustration of CLIP’s zero-shot classification. After training, CLIP is capable of properly classi-
fying an image provided the properly tuned weights that result from the pre-training. Similarity measures are
computed between the image and each possible text pair and the shortest distance denotes the right class.
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Exercise 5.1 Let us now apply the previous principles in practice. You will be implementing multiple functions—each
serving a different purpose—covering the processing, embedding, and classification of image-text pairs. In essence, you
will be feeding a ViT and a standard Transformer with the intended data, which will allow for image-text pair classification
following CLIP’s approach. To that end, this exercise will guide you through the completion of the corresponding yet-to-
be-completed notebook cells present in 1xmls/labs/notebooks/multimodal/clip_exercise.ipynb:

1. Basic setup: Run the first two cells of the notebook to import all necessary dependencies for proper execution of all
code cells.

2. Data and model setup: Run all subsequent cells until Cell 19 (inclusive). This will enable you to automatically
execute the following steps:
* Prepare the ViT’s input (i.e., loading an example image of two cats);
* Initialize the GPT model from the previous day for image labelling;

* Prepare a string to use as a default for image classification (this will later append individual GPT-generated
labels);

* Load and prepare a CLIP model;
¢ Convert the example image using the image processor;
* Load a tokenizer and tokenize the previously defined image labels;
o Embed the image labels and visualize the outcome of splitting the example image into fixed size patches;
e Store the learned weights for linearly projecting the image.
3. Prepare the image for projection to the embedding space: You will now implement a function whose purpose

is to project the image, in its entirety, to the embedding space. For that to happen, define the following steps in
sequernce:

* Break the image into multiple patches of fixed size (patch_size, patch_size) (Hint: Take a peek at Cell 18. How
can we declare patches?);
* Apply a learnable linear layer to each patch (Hint: Take a peek at Cell 19 and Eq.[5.3);

e Assign each linearly projected patch embedding to the manual_patch_embeds variable.

get_patch embeddings (pixel values, filter_weights):
using a similar code as the visualization above, project the image patches in the
embedding space”"""

mwn

len (pixel_values) == 1 # we do it for a single image for the example
manual_patch_embeds = torch.zeros (num_patches, num _patches, filter._weights.shape
[0], device=model.device)

# YOUR SOLUTION HERE

manual_patch_embeds

4. Flatten the embeddings and check for correctness: Run all subsequent cells until Cell 22 (inclusive). This will
enable you to automatically execute the following steps:

* Retrieve the linearly projected patch embeddings, as per the function you've just defined, and flatten it (notice
the difference in shape before and after flattening);
o Compare your results with the original implementation to assure correctness (this will allow you to test if you

implemented the previous function as intended).

5. Prepare the class token and positional embeddings: You will now implement a function that serves the fol-
lowing purposes:

* Prepend a learnable class embedding to the previously defined patch embeddings (already implemented for
convenience)

* Add a learnable positional embedding to retain information about each patch’s location in the original image
(Hint: Take a peek at Eq. look through the possible method calls of the model, and respective arguments)
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get_add cls _and position (manual_patch_embeds) :
"""The only thing left to do is to add class and position embedding"""

class_embeds = model.vision_model.embeddings.class_embedding.expand (batch_size,
1, -1)
hidden_states = torch.cat ([class_embeds, manual_patch_embeds], dim=1)

# YOUR SOLUTION HERE

hidden_states = model.vision_model.pre_layrnorm(hidden_states)
hidden states

6. Conclude the image embedding and project the image-text pairs: Run all subsequent cells until Cell 27
(inclusive). This will enable you to automatically execute the following steps:
* Retrieve the class and positional embeddings in conjunction with the patch embeddings;
o Feed the previously declared embeddings to the ViT;
o Extract the class token representation;
o Apply the final normalization to obtain the image embedding;
* Project both the text and image embeddings to the shared embedding space (see Figure|5.4|for a visual expla-

nation)

7. Define the distance function: You will now implement a function whose purpose is extracting the similarities
between all image-text embedding pairs. To accomplish that, define the following steps in sequence:

* Normalize each embedding (Hint: Take a peck at Eq.[5.11);
» Apply the cosine similarity to the embeddings (Hint: Take a peek at Eq.

get_sim(text_embedding, image_embedding) :

# YOUR SOLUTION HERE

similarities

8. Retrieve the similarities: Run Cell 29 to retrieve the similarities as per the function you ve just defined.

9. Define a rerank function: You will now implement a function whose purpose is reranking the retrieved similarities
between all image-text embedding pairs, in descending order, such that the class with highest probability stays on
top:

rerank (similarities) :
"mrAll is left to do is sort the similarities to rerank the text"""

# YOUR SOLUTION HERE

ranking

10. Analyze the results: Run all remaining cells. This will enable you to automatically execute the following steps:

* Apply the reranking function to the similarity scores;

» Print the resulting similarities in descending order, guaranteeing that the classification with the highest prob-
ability stays on top (see Figure[p.|for a visual description).

What can you conclude by analyzing the results? Does your implementation work as intended?

85



5.4 VLM: Vision-Language Models

5.4.1 From Retrieval to Generative Vision-Language Models

The next step in multimodality is to go beyond retrieval-based alignment (like in CLIP) to generative vision
language models (VLMs) that can produce novel text conditioned on images. Instead of merely ranking or
classifying images via a shared embedding space, generative VLMs take an image (and optionally text) as
input and output descriptive or explanatory text. This enables rich tasks such as image captioning, visual
question answering, and even multimodal dialogue.

A common design pattern in these models is to use a pre-trained image encoder to transform an image
into a sequence of vector embeddings, then feed those visual tokens into a language model that generates text.
Intuitively, the image is ‘translated” into the same token space as the text, allowing a transformer to handle
both modalities jointly. Unlike dual encoders that map each modality to a separate embedding space (e.g.,
CLIP), generative VLMs typically integrate both within one model, often an encoder-decoder or a decoder-
only transformer with modified attention. This allows the model to produce natural language grounded in
visual context, rather than just comparing embeddings.

5.4.2 Gemma3

A recent state-of-the-art VLM is Gemma 3 (Kamath et al., [2025), released by Google in 2025. It builds upon
the Gemma language model family and extends it to handle both text and images using a unified architec-
ture. Gemma 3 comes in sizes up to 27B parameters and is capable of zero-shot generation, captioning, and
multimodal dialogue.

At its core, Gemma 3 uses a vision encoder based on SigLIP [Zhai et al.| (2023), which improves upon
CLIP’s contrastive training by using a pairwise sigmoid loss. In SigLIP, each image—text pair is treated as an
independent binary classification task, avoiding the need for large softmax normalization over batch entries.
CLIP relies on a symmetric contrastive loss that computes a full N x N similarity matrix across all image-text
pairs in a batch, requiring both image-to-text and text-to-image losses. This results in quadratic computational
complexity and necessitates extremely large batch sizes (32k+) to maintain a diverse set of negative samples.

In contrast, SigLIP replaces this formulation with a pairwise sigmoid loss, which allows each image-text
pair to be evaluated independently:

1
LsigLip = B "ZB log o (z;; - (t- xl-Tyj —b))
1L,]€

where z;; € {+1, -1} indicates whether the pair is a true match, f is a learnable temperature parameter, and
b is a learnable bias. The use of the sigmoid function ¢ in this context means the model no longer depends
on global normalization over the entire batch. Most importantly, SigLIP performs robustly with much smaller
batch sizes—enabling high-quality training with batch sizes between 2k and 8k—making it a more accessible
and efficient choice.

The SigLIP vision encoder of Gemma 3 only processes images of size 896 x 896 pixels. If an image has a
different aspect ratio, a “Pan and Scan” strategy is applied to crop it into one or more square patches. Each
patch is passed through the SigLIP ViT encoder and then passed through a multimodal projector, essentially a
Linear layer, before being interleaved into the text embeddings for causal generation.

During generation, Gemma 3 uses a single decoder-only transformer that attends over both visual and
textual tokens. Visual tokens receive bidirectional attention allowing image patch tokens to see all other
patches in the same image, while text tokens are attended to causally. Text tokens can freely attend to prior
text and visual tokens but not future text, preserving autoregressive generation.

An overview of the Gemma 3 architecture, including the SigLIP-based vision encoder, multimodal token
projector, and unified decoder, is illustrated in Figure

Exercise 5.2 As the final exercise, we will be implementing a function for multimodal tokenisation and testing multi-
modal generation with Gemma 3. This exercise will guide you through completing the corresponding notebook located at
1xmls/labs/notebooks/multimodal/vim_exercise.ipynb, focusing on the key steps required to process
interleaved image and text data for a VLM.

1. Setup: Begin by running the first cell in the notebook to import the necessary libraries.
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Figure 5.6: Architecture diagram of Gemma 3 (4B variant), highlighting the visual encoder, token projector,
and decoder with mixed attention.

2. Tokenisation without padding using Image Placeholders
Your first task is to complete the tokenize_without_padding function which translates a multimodal se-
quence of text and images into a list of token 1Ds. Your implementation should:

o Start the token sequence with a single beginning-of-sequence ( [BOS]) token.
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e [terate through the prompt. If an element is a string, encode it into token IDs. If it is an image, you must
insert a specific sequence of special tokens: a newline, a beginning-of-image token, a set of image placeholder
tokens, and an end-of-image token. Each of these tokens are accessed as part of the Tokenizer class defined
in “Ixmls/multimodal/gemma3/processor.py”.

* As hinted in the notebook, the number of placeholder tokens is determined by the vision model’s architec-
ture. It corresponds to the number of feature vectors the SigLIP encoder generates for each image. Refer to
the definition of the SigLIP encoder in “Ixmls/multimodal/gemma3/siglip_vision/model.py” and its config in
“Ixmls/multimodal/gemma3/siglip_vision/model.py” to find this value.

e Finally, collect all PIL Images into a separate list to be processed by the vision encoder later.

tokenize without_ padding(
prompt: Sequence[str | torch.Tensor],
tokenizer: Tokenizer,
vis_cfg: SiglipVisionModelConfig,
) —> Tuple[list[int], list[torch.Tensor]]:

mmn

Processes a single preprocessed prompt containing text and image tensors.

mmn

token ids: List[int] = []
images: List[torch.Tensor] = []

# YOUR SOLUTION HERE

token_ids, images

3. Padding the Sequences
Most deep learning models process data in batches for efficiency. Since different prompts will have different lengths
of text and numbers of images, we must pad them to uniform dimensions.

o Complete the pad_token_sequences function to pad each token list to the maximum sequence length in
the batch using the tokenizer’s pad_id.

* Next, complete the pad-image_sequences function. This function should pad the list of images with
zero-tensors and create a boolean image_presence_mask to differentiate real images from padding.

pad_token _sequences (all_token_ids: List[List[int]], max_seq _len: int, pad_id:
int) —-> List[List[int]]:

mmn

Pads each token sequence in a batch to a specified maximum length.

mmn

# YOUR SOLUTION HERE
finalised token_ids

pad_image sequences (
all_images: List[List[torch.Tensor]],
max_num_images: int,
vis_cfg: SiglipVisionModelConfig,
device: Any,
) —> Tuple[List[List[torch.Tensor]], List[List[bool]]]:

mmon

Pads each list of images 1in a batch to a specified maximum number.
mrmmn

# YOUR SOLUTION HERE

image_batch, image_presence_mask

4. Execution and Generation: The notebook provides the main tokenize and generate functions that orches-
trate the steps you've implemented.
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* Review the logic in these functions to understand how your helper functions are used in the complete pipeline.

* Run the final cells to test your implementation. Observe the model’s responses to the text-only, single-image,
and interleaved prompts.

o How does the model’s output for the final prompt demonstrate its ability to ground language in visual context?
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