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Today's AI: Powerful Predictors Built on Correlation

Regression

: Learned 
features

Z

Prediction
: Input


Observed 
features

X

Representation 
Learning

P(Y = y |X)
E(Y |X)

Medical Diagnosis 
P(Y = disease |X = patient features)

Image Classification 
P(Y = dog |X = pixel array)

Language Modeling 
P(Y = wt |X = w1, …, wt−1)

Speech Recognition 
P(Y = text |X = audio)

Weather Forecasting 
P (Y = Tt+h |Tt−1, Tt−2, …Tt−p)

Remarkable advances in estimating  include DNNs, transformers, GNNs, …P(Y |X)

We learn a model , such that  is the  
optimal prediction of  by capturing the conditional distribution 

f : 𝒳 ↦ 𝒴 ̂Y = f(x)
Y P(Y |X)
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Correlation between severity of fire and 
number of firefighters in action
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y = 2,3x - 1
R² = 0,92

9

5
32

P(Y = y |X = x) ≠ P(Y = y)

Task: Can I predict (guess) how severe is a fire by observing the number of firefighters?

Positive Correlation: 

: Number of firefighters in action 
: Severity of the (initial) fire

X
Y

Yes!

  is a good predictor of ρXY ≠ 0 ⟹ X Y

Observational 
Probability Distribution Changing  will change our prediction for :X Y

The less firefighters, the weaker the fire!

Does a predictive model explain the world?
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Should we reduce the number of firefighters to 
decrease the size of the fire?👨🚒

Misleading correlation: It is the size of the fire that determines 
the number of firefighters needed, not the other way around.

Prediction  Decision-Making / Reasoning?⇒
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  does not cause ,  
it is the other way around!

X Y: Number of firefighters in action 
: Seriousness of fire

X
Y

{X = fX(Y, UX, UXY)
Y = fY(UY, UXY)

Structural Causal Model (SCM) 

The causal direction is determined by understanding the underlying reality.

Causal Effect  Effect of an Intervention≡

X = x

P(Y = y |do(X = x)) = P(Y = y)
Interventional 

Probability Distribution

The action/intervention on ,   is independent of X do(X = x) Y

Changing  won’t change the value of  in reality!X Y

In this case,  


but , 

P(Y = y |see(X = x)) ≠ P(Y = y)
∀x P(Y = y |do(X = x)) = P(Y = y)YX

UXYUX UY

Causal Diagram

Reverse 
Causation!



Interpreting the Link: Nurses and Patient Mortality
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: Number of nurses in a hospital 
: Patient mortality

X
Y

̂Y = f(X)

 is positively correlated to X Y
Regression / 

Machine Learning 

YX

UXYUX UY

YX

UXYUX UY

YX

UXYUX UY

Hospitals with more nurses on staff sometimes 
report higher patient mortality rates.

: Hospital size, patient severity, or emergencies (latent confounders) can increase 
both nurse demand and mortality, causing a (positive) spurious correlation.

UXY

Typically, a negative causal effect 
from improved patient care.



Even with Time, Can Associations be Misleading?
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https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by seeing more data? 

CancerMobile 
Phone CancerMobile 

Phoneor or CancerMobile 
Phone ?CancerMobile 

Phoneor
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Challenges emerge in more complex tasks that demand careful consideration of 
biases and underlying mechanisms, including:

• Explaining the underlying data-generating processes,

• Providing unbiased estimates of effects of interventions,

• Identifying optimal and personalized approaches, 
• Ensuring fairness in clinical decision support systems,

• Achieving generalizability across diverse domains / populations.

Those require 
causal / real-world 

insights!!

AI predicts everything, but does it explain the world?

What can be done to overcome these challenges?



Can Model Explainability Provide Causal Insights?
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The promise of model explainability:

• Feature Importance: SHAP, LIME, Permutation Importance

• Visualization Techniques: Partial Dependence Plots, Saliency Maps

• Counterfactuals Explanations: What-If Analysis

• Model Probing: Ablation Studies, Sensitivity Analysis

: 
Observed 
features

X

Optimal prediction of ,  
capturing 

Y
P(Y |X)

f : 𝒳 ↦ 𝒴

̂Y = f(x)



Why Doesn't Model Explainability Imply Causality?
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YX
G1

YX
G2

YX
G3

YXG4

YX
G5

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 P(Y |X = x)^

D
N

N

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

  
  improves prediction of 

P(Y |X = x) ≠ P(Y)
⇒ X Y

 | X Y

: Number of Nurses 
: Patient Mortality

X
Y

Fitted Model
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= ⟨V, U2, ℱ2k2

, P2k2
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⋯
⋯
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= ⟨V, U3, ℱ3k3
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⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 P(Y |X = x)^

D
N

N

True Model

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

  
  improves prediction of 

P(Y |X = x) ≠ P(Y)
⇒ X Y

 | X Y

: Number of Nurses 
: Patient Mortality

X
Y

Fitted Model

Why Doesn't Model Explainability Imply Causality?



True Model
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⋯
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ℳ4k4
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⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 P(Y |X = x)^

D
N

N

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

  
  improves prediction of 

P(Y |X = x) ≠ P(Y)
⇒ X Y

 | X Y

: Number of Nurses 
: Patient Mortality

X
Y

Fitted Model

Model Explanations  Reality Explanations:


 Sending fewer firefighters will help reduce the size of the fire.

 Hiring more nurses will increase the likelihood of patient mortality.

 Having cancer increases the likelihood of using a cell phone.

≠

⟹
⟹
⟹

Why Doesn't Model Explainability Imply Causality?



Randomized Experiments
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A well accepted way to access  is through a perfectly realized 
Randomized Experiments / Control Trials (e.g. RCT): 

P(Y |do(X = x))

YX

do(X = x0)

YX

do(X = x1)
Randomization of the 

’s assignmentX

𝔼[Y |do(X = x0)]

𝔼[Y |do(X = x1)]

Average Causal Effect: 𝔼[Y |do(X = x0)] − 𝔼[Y |do(X = x1)]



How do we move from prediction to  
true understanding of reality  

without randomized experiments?
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 Donald B. Rubin, Guido W. Imbens & Joshua D. Angrist
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In 2021, Angrist & Imbens won the Nobel Prize in Economics  

“for their methodological contributions to the analysis of causal relationships”

Professor of Applied 
Econometrics at 

Stanford University

Guido W. ImbensDonald B. Rubin

Professor of 
Statistics at 

Harvard University
Professor of 

Economics at MIT

Joshua D. Angrist

https://www.nobelprize.org/prizes/economic-sciences/2021/summary/


Judea Pearl — Causal Artificial Intelligence
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Director of the Cognitive Systems Laboratory at 
the University of California, Los Angeles.

In 2011, he won the A. M. Turing Award (the 
highest distinction in computer science and a 
$250,000 prize)

“for fundamental contributions to artificial 
intelligence through the development of a 
calculus for probabilistic and causal reasoning.” 
— Association for Computing Machinery (ACM)

“Deep learning has instead given us machines with truly 
impressive abilities but no intelligence. The difference is 
profound and lies in the absence of a model of reality.”

 — The Book of Why: The New Science of Cause and Effect 

https://amturing.acm.org/award_winners/pearl_2658896.cfm


Causality Theory by Judea Pearl
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Causality Theory by Judea Pearl
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https://causality101.net/



Yoshua Bengio — Deep Learning
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Professor at the University of Montreal, and the 
Founder and Scientific Director of Mila – Quebec 
AI Institute

“Causality is very important for the next steps of progress of 
machine learning,” —  interview with IEEE Spectrum. 

In 2018, he won the A. M. Turing Award, with 
 Geoffrey Hinton, and Yann LeCun

“for conceptual and engineering breakthroughs that 
have made deep neural networks a critical 
component of computing.”
 — Association for Computing Machinery (ACM)

https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/yoshua-bengio-revered-architect-of-ai-has-some-ideas-about-what-to-build-next
https://spectrum.ieee.org/understanding-causality-is-the-next-challenge-for-machine-learning
https://amturing.acm.org/award_winners/bengio_3406375.cfm


Notable Books and Lecture Notes

20https://causalai-book.net/

Carnegie Mellon University  Mila - Quebec AI Institute

University of Amsterdam

https://causalai-book.net/
https://causalai-book.net/
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/
http://www.apple.com
https://mila.quebec/en/mila/
https://www.bradyneal.com/causal-inference-course
https://staff.fnwi.uva.nl/j.m.mooij/articles/causality_lecture_notes_2025.pdf


Pearl’s Causal Hierarchy (PCH)
The Three Inferential Layers

21



      Layer Task / Language Typical Question Examples

Ladder of Causation

22

Counterfactual

 P(yx | x’, y’) 

What if I had acted 
differently?

Was it the aspirin 
that stopped my 

headache?

Associational

 P(y | x) 

What if I see?

How would seeing 
X change my belief 

in Y?


What does a 
symptom tell us 

about the 
disease?

Interventional

 P(y | do(x), c)

What if I do X? 

What would Y be if 
I intervene on X?

Will my headache 
be cured if I take 

aspirin?

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 

ML- (Un)Supervised 
(Bayesian Networks, 
Decision Trees, 
Deep Neural Networks)

ML- Reinforcement
(Causal Bayes Net)

Structural  
Causal Model

1.
 S

ee
in

g
2.

 D
oi

ng
3.

 Im
ag

in
in

g 

https://causalai.net/r60.pdf


Ladder of Causation
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* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 

1.
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most of the inferences are 
about causal effects 

(policies, treatments, decisions)

most of the available data 
is observational, 

passively collected

Doing 

Seeing 

  Cross-layer inferences:  

https://causalai.net/r60.pdf


Ladder of Causation

24
* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 
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most of the inferences are 
about causal effects 

(policies, treatments, decisions)

most of the available data 
is observational, 

passively collected

Doing 

Seeing 

  Cross-layer inferences:  

Causal Hierarchy Theorem : The ladder almost never 
collapses. That is, for almost any SCM, the rungs of 

the ladder remain distinct. 

https://causalai.net/r60.pdf


Causality: A Key to Overcoming AI's Greatest Challenges
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Data Fusion: Provides language and inferential machinery to cohesively combine prior 
knowledge and data from multiple and heterogeneous studies. 


- Causal Modeling, Causal Representation Learning and Causal Abstraction


Explainability: Provides a better understanding of the true underlying mechanisms

- Causal Discovery 

Optimal Decision Making: Can determine the unbiased effect of unrealized 
interventions, distinguishing between association and causation, rather than just 
predicting outcomes.


- Causal Effect Identification and Estimation 

Personalized Inferences: Enables counterfactual reasoning by considering alternate 
scenarios and individual variability.


Fairness: Identifies and disentangles any mechanisms of discrimination, whether direct 
or indirect (potentially mediated or confounded).


Generalizability: Enables effect transportability across different populations.

β1

β2 P(y |do(x), c)

P(yix0
|x1, ci)

P(ynx0
|x1, ci)
⋮

βxi

βxn



Structural Causal Model (SCM)
The true model behind the data 

Full explainability for all layers of the causal hierarchy

26



Structural Causal Model (SCM)
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Definition:  A structural causal model  (or, data generating model) is a tuple 
, where


• : are endogenous variables


• : are exogenous variables 


• : are functions determining , i.e., , where


-   are endogenous causes (parents) of  


-  are exogenous causes of .


•  is the probability distribution over .


Assumption:   is recursive, i.e., there are no feedback (cyclic) mechanisms.

ℳ
⟨V, U, ℱ, P(u)⟩

V = {V1, …, Vn}

U = {U1, …, Um}

ℱ = {f1, …, fn} V vi ← fi(pai, ui)
Pai ⊆ V Vi

Ui ⊆ U Vi

P(U) U

ℳ
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do(X = x)

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Post-Interventional / 
Interventional SCM

Pre-Interventional/
Observational SCM

ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)

Can we predict better the value of  after 
making an intervention ?

Y
do(X = x)

 is a cause of  X Y s.t. ∃x Pℳx
(Y = y) ≠ P(Y = y) ⟹P(Y = y |X = x) ≠ P(Y = y) ⟹

Can we predict better the value of  after 
observing that ?

Y
X = x

 is correlated to  X Y

  P(V) ≐ Pℳ(V) P(V |do(X = x)) ≐ Pℳx
(V)≠

Observational 
Distribution

Interventional 
Distribution

Statistical Association vs Causation



Structural Equation Model (SEM)
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• Linear functions 
• Normal distribution 
• Markovianity / Causal Sufficiency: 

Error terms in  are independent of 
each other (diagonal covariance matrix).

Uℳ =

V = {X, Y, Z}
U = {ϵX, ϵY, ϵZ}

ℱ =
Z = βZ0 + ϵZ

X = βX0 + βXZZ + ϵX

Y = βY0 + βYZZ + βYXX + ϵY)

U ∼ 𝒩 0, Σ =
σX 0 0
0 σY 0
0 0 σZ

Full specification of an SCM requires parametric and distributional assumptions. 
Estimation of such models usually requires strong assumptions (e.g., Markovianity).



SCM: Encoder of Functional Knowledge
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The knowledge required to fully specify an SCM is usually unavailable in practice.

Is it possible to identify the effect of interventions from observational data 
without fully specifying the SCM (i.e., in a non-parametric fashion)? 

Yes, with structural knowledge encoded as a causal diagram!👩🏫



A DAG, possibly with latent confounders (ADMG),  
representing structural causal and confounding  

knowledge implied by an SCM

31

Causal Bayesian Network

 Acyclic Directed 
Mixed Graph

 Directed 
Acyclic Graph



ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge

32

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Bayesian Network (CBN)

Causal Diagram

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

C

DA

B
SES

Heart DiseaseDrug

Headache
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B

Hypertension

SES

Heart DiseaseDrug

Headache

UCD

UA

UB UC

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

UD

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge

Induced Causal Bayesian Network (CBN)

Causal Diagram
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B

Hypertension

SES

Heart DiseaseDrug

Headache

UCD

UA

UB UC

UD

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge

Induced Causal Bayesian Network (CBN)

Causal Diagram
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B
SES

Heart DiseaseDrug

HeadacheUA

UB UC

UD

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge

Induced Causal Bayesian Network (CBN)

Causal Diagram
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B
SES

Heart DiseaseDrug

Headache

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge

Induced Causal Bayesian Network (CBN)

Causal Diagram



Challenges in Causal Modeling
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• Dimensionality and complexity: 
• Specifying a correct causal diagram in high-dimensional settings is often 

infeasible due to combinatorial explosion.


• Limited and fragmented prior knowledge: 
• Expert knowledge is often partial, inconsistent, and insufficient for full model 

specification.


• Mismatch between observed and the true causal variables: 
• Observed variables may be proxies, composites, or irrelevant to the underlying 

causal structure.

Need for causal abstraction and causal representation learning to 
represent meaningful, tractable causal variables and structures.



Causal Representation Learning & Causal Abstraction
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Coarse-grained causal models:

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., 
Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). 
Toward causal representation learning. Proceedings 
of the IEEE, 109(5), 612-634.

https://auai.org/uai2017/proceedings/papers/11.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9363924


C-DAGs for Partially Understood Causal Systems
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YX S
( ) Lisinopril

( ) Sleep Quality 

( ) Stroke

X
S
Y

A DCB

A cluster DAG (C-DAG)  over a given partition  of  is compatible with a 
causal diagram  over  if for every :


•   if  and  such that 


•  if  and  such that 

GC C = {C1, …, Ck} V
G V Ci, Cj ∈ C

Ci → Cj ∃Vi ∈ Ci Vj ∈ Cj Vi → Vj

Ci ⤎⤏ Cj ∃Vi ∈ Ci Vj ∈ Cj Vi ⤎⤏ Vj

{{X}, {S}, {Y}, {A, B, C, D}}

) Age

( ) Blood pressure

( ) Comorbidities

( ) Medication history

A
B
C
D

and  contains no cycles.GC

Anand, T. V.*, Ribeiro A. H.*, Tian, J., & Bareinboim, E. (2023). Causal Effect Identification in Cluster DAGs. In 
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence.



C-DAGs for Partially Understood Causal Systems
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YX S

A DCB

YX S

A DCB

YX S

A DCB

Many causal diagrams are compatible with 
the current knowledge!

YX S

A DCB

Can be seen as an equivalence class of causal 
diagrams, where any relationships are allowed among 

the variables within each cluster. 

⋯



C-DAG: Flexible Encoder of Model Assumptions
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One cluster of size N  
(no knowledge)

YX S

A DCB

…

(partial knowledge - C-DAG)

YX S

A D
CB

N clusters of size one 
(full knowledge - DAG)

YX S

A D
CB

Clusters are manually created by domain experts:


- due to lack of knowledge, consensus, or interest on the internal causal structure;


- to communicate relationships among semantically meaningful entities.

In a C-DAG, clusters represent macro-variables of an abstracted, coarser SCM.



42

What if domain knowledge does not allow 
you construct a (cluster) causal diagram?



Bayesian Network
A DAG, possibly with latent confounders (ADMG),  

representing the joint distribution / conditional independences  
implied by an SCM

43



Bayesian Networks & Markov Condition
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A DAG  over  is a Bayesian Network for a joint probability distribution  if, for 
every , it holds that  and, therefore,  factorizes as follows:


G V P(V)
Vi ∈ V Vi ⊥⊥ NDesci |Pai P(v)

P(v) = ∏
Vi∈V

P(vi |vi−1, …, v1)

= ∏
Vi∈V

P(vi |pai)
Vi ⊥⊥ NDesci |Pai, Ui

Z
Y

X
WA

W ⊥⊥ X, Y, A |Z A ⊥⊥ Z |X, Y

P(v) = P(w |z, x, y, a) P(z |x, y, a) P(x |y, a) P(y |a) P(a)

Y ⊥⊥ X |A

= P(w |z) P(z |x, y) P(x |a) P(y |a) P(a)

It holds for any 
topological order of G

Chain Rule:

Edges have no 
causal semantics!

 is satisfies the 
Markov Condition 

w.r.t. 

P

G



Bayesian Networks & Semi-Markov Condition 
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An ADMG  over  is a Bayesian Network for a joint probability distribution  if, for 
every , it holds that  and, therefore,  factorizes as follows:


 
.

G V P(V)
Vi ∈ V Vi ⊥⊥ NDesci |Pa+

i P(v)

P(v) = ∏
Vi∈V

P(vi |pa+
i )

EDB

A
C

F

P(v) = P(e |d, c, b, a, f ) P(d |c, b, a, f ) P(c |b, a, f ) P(b |a, f ) P( f |a) P(a)
= P(e |d, c, a) P(d |c, b, a) P(c |a) P(b |a) P( f |a) P(a)

E ⊥⊥ F, B |D, C, A D ⊥⊥ F |B, C, A C ⊥⊥ F, B |A B ⊥⊥ F |A

The extended parents of  is defined as 
, 

where  and  is a 
maximal path entirely made of bidirected edges.

Vi
Pa+

i = Pa1({V ∈ C(Vi) : V ≤ Vi})∖{Vi}
Pa1(V ) = Pa(V ) ∪ V C(Vi)

 is satisfies the 
Semi-Markov Condition 

w.r.t. 

P

G



Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

X Y

X Y

X Y

X Y

X Y

i.e., X ⊥⊥ Y

 P(X, Y)

with   P(Y |X) ≠ P(Y) P(x, y) = P(x |y)P(y)

P(x, y) = P(y |x)P(x)

Markov 
Equivalent BNs

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence 
Class is a set of models that encode the same set of conditional independencies.



Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

X Y

X Y

X Y

X Y

X Y

i.e., X ⊥⊥ Y

 P(X, Y)

with   P(Y |X) ≠ P(Y) P(x, y) = P(x |y)P(y)

P(x, y) = P(y |x)P(x)

Markov 
Equivalent BNs

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence 
Class is a set of models that encode the same set of conditional independencies.

All models imply no independence 
and no other invariance



Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X, Z) = P(Y |X)

i.e., X ⊥⊥ Y |Z

P(x, y, z) = P(y |x, z)P(z |x)P(x)
= P(y |z)P(z |x)P(x)

P(x, y, z) = P(y |x, z)P(x |z)P(z)
= P(y |z)P(x |z)P(z)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

P(x, y, z) = P(x |y, z)P(y |z)P(z)
= P(x |z)P(z |y)P(y)

⋮

⋮

⋮

Markov 
Equivalent



Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X, Z) = P(Y |X)

i.e., X ⊥⊥ Y |Z

P(x, y, z) = P(y |x, z)P(z |x)P(x)
= P(y |z)P(z |x)P(x)

P(x, y, z) = P(y |x, z)P(x |z)P(z)
= P(y |z)P(x |z)P(z)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

P(x, y, z) = P(x |y, z)P(y |z)P(z)
= P(x |z)P(z |y)P(y)

⋮

⋮

⋮

Markov 
Equivalent

All models imply only  and  
Z is always a non-collider in such models.

X ⊥⊥ Y |Z



Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X) = P(Y)

i.e., X ⊥⊥ Y

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y
⋮

Markov 
Equivalent



Markov Equivalence Class
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X) = P(Y)

i.e., X ⊥⊥ Y

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y
⋮

Markov 
Equivalent

All models imply only  and  
Z is always a collider in such models, 

Note:  is never an ancestor of  or 

X ⊥⊥ Y

Z X Y



D-Separation
Graphical Tool for Identifying Conditional Independencies  

implied by Bayesian Networks
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Implied Conditional independencies
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X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |W

Z

YX

Obesity Baldness

Age

Fork
 as a common causeZ

Z YX

Family History 
of Diabetes StrokeDiabetes

Chain
 as a mediatorZ

Z

YX

Diet Physical 
Activity

Obesity

W
Heart 

Disease

V-Structure

 as a collider or common effectZ

Two Markov-equivalent models. 
Note that in both cases  is a non-collider!Z



Active and Inactive Triplets
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Definition (inactive):  A triplet  is said to be inactive 
relative to a set  if the middle node :


1. Is a non-collider and is in ; or

2. Is a collider and neither it nor any of its descendants in .

⟨Vi, Vm, Vj⟩
Z Vm

Z
Z

X W Y

X W Y

 is non-collider   
and 

W
W ∈ Z

X W Y

X W Y

X W Y

A

 is (descendant of) a 
collider and 
W

W, A ∉ Z



D-Separation
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Definition (d-separation): A path  in an ADMG  is said to be d-separated (or blocked) by a set 
of variables  if and only if  contains an inactive triplet in it.


A set  d-separates  and  if and only if   blocks every path between a node in  and a node in
. We denote that by . 

p G
Z p

Z X Y Z X
Y (X ⊥⊥ Y |Z)G

{B} {W} {B, W}{}X B W Y

X B W Y {B} {W} {B, W}{}

:Z

:Z

Does  d-separate  and  ?Z X Y

X B W Y {B} {W} {B, W}{}:Z

(X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P
D-separations in  correspond to 
conditional independencies in 

G
P



Markov Blanket (Markovian)
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Markov Blanket  (MB) of a Markovian BN over : the union of parents, children, 
and parents of the children .


V
V

mbG(V) = Pa(V) ∪ Ch(V) ∪ Pa(Ch(V))

V Markov Blanket of V

V ⊥⊥ V∖mbG(V) |mbG(V)



Markov Blanket (Semi-Markovian)
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Markov Blanket  (MB) of a Semi-Markovian BN over : is the district of  and the 
parents of the district of  (excluding  itself) i.e.: 


V V
V V

mbG(V) = disG(V) ∪ PaG(disG(V))∖{V}

Richardson, T. (2003). Markov Properties for Acyclic Directed Mixed Graphs. Scandinavian Journal of Statistics, 30(1), 145–157

V
Markov Blanket of V

V ⊥⊥ V∖mbG(V) |mbG(V)

District of , ,  is 
the set of variables 
connected with  

through an edge or a 
bidirected path.

V disG(V )

V
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Can we learn the  
Markov Equivalence Class from 

observational data?



Learning the Markov Equivalence Class
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Identifiability: In non-parametric settings (i.e., without making parametric or 
distributional assumptions) and solely from observational data, causal discovery 
algorithms can only learn a graphical representation of a Markov equivalence class! 

Causal Sufficiency: assumption that all confounding variables have been observed — 
although strong, it has been widely employed to simplify causal discovery and inference.

Algorithms: Constraint-Based vs Score-Based

Systems: Causal Sufficient vs Causal Insufficient



Score-Based Causal Discovery Algorithms
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Strategy: search for the most probable causal structure by assessing 
goodness-of-fit scores of different possible structures.


Common Scores: Bayesian Information Criterion (BIC) for Gaussian variables 
and the BDeu score for multinomial variables.

Under causal sufficiency:

• GES: Greedy Equivalence Search, by Chickering, 2003.

• FGES: Fast GES, by Ramsey et al., 2017 — extension of the GES that 
improves the runtime of the algorithm by using parallelization.

https://www.jmlr.org/papers/volume3/chickering02b/chickering02b.pdf?ref=https://githubhelp.com
https://link.springer.com/article/10.1007/s41060-016-0032-z


Score-Based Causal Discovery Algorithms
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Accounting latent confounding:

• GSMAG: a greedy search algorithm for learning 
MAGs, by Triantafillou, S. and Tsamardinos, I., 2016.

• MAGSL: search based on dynamic programming and branch and bound, by 
Rantanen et al., 2021 — it is guaranteed to find a globally optimal MAG.

• Diff-discovery: solves a continuous optimization problem with differentiable 
procedures to find the best fitting ADMG, by Bhattacharya et al., 2021.

• N-ADMG: Neural ADMG Learning, by Ashman et al., 2013 — extends Diff-discovery 
to the setting where the true causal diagram is bow-free and corresponds to a non-
linear SCM with additive noise.

Use BIC, assuming 
linear Gaussian models

https://ceur-ws.org/Vol-1792/paper7.pdf
https://proceedings.mlr.press/v161/rantanen21a/rantanen21a.pdf
https://rohit-bhattacharya.com/research/dcd_paper.pdf
https://openreview.net/pdf?id=dcN0CaXQhT


Constraint-Based Causal Discovery Algorithms
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Under causal sufficiency:

PC: Peter-Clark, by Spirtes and Glymour, 1991.

Strategy: construct a causal structure that aligns with all observed conditional 
independencies, identified using conditional independence tests.

Spirtes, P., Glymour, C., and Scheines, R. (2001).  
Causation, Prediction, and Search, 2nd edn. Cambridge, MA: MIT Press.

IC: Inductive Causation, by Verma and Pearl, 1990.

They start with an adjacency (skeleton) phase, based 
on conditional independence tests, followed by an 
orientation phase.

https://www.cse.sc.edu/~mgv/csce582sp14/presentations/SpirtesGlymourPC.pdf
https://ftp.cs.ucla.edu/tech-report/1991-reports/910020.pdf


Constraint-Based Causal Discovery Algorithms
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Accounting for latent confounding:

• FCI: Fast Causal Inference, by Spirtes et al., 1995 — most prominent extension of the 
PC and IC/IC* algorithms. Together with the additional rules by Zhang, J. (2008), is a 
complete algorithm accounting for both latent confounding and selection bias.

• FCI variants: Anytime FCI (AFCI), by Spirtes P., 2001, Conservative FCI (CFCI) and Really 
FCI (RFCI), by Colombo et al. 2012; and FCI+, by Claassen et al. 2013.

• ACI: Ancestral Causal Inference — a logic-based algorithm by Magliacane et al., 2016.

• SAT-Based: uses a Answer Set Programming (ASP) solver to find a causal structure that 
most satisfies the minimal observed conditional independencies, by Hyttinen et al., 2014.

https://arxiv.org/pdf/1302.4983
https://www.sciencedirect.com/science/article/pii/S0004370208001008
https://proceedings.mlr.press/r3/spirtes01a.html
https://arxiv.org/pdf/1104.5617
https://arxiv.org/pdf/1309.6824
https://staff.science.uva.nl/j.m.mooij/articles/6266-ancestral-causal-inference.pdf
https://www.cs.helsinki.fi/u/mjarvisa/papers/hyttinen-eberhardt-jarvisalo.uai14.pdf


Constraint-Based Causal Discovery Algorithms

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data

64

ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

⋮



Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data

65

ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Z YX

Partial Ancestral Graph 
MEC Representation

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

Causal 
Discovery

FCI Algorithm

⋮

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and 
selection bias. Artificial Intelligence, 172(16):1873–1896. Link

        non-ancestor of 

        non-ancestor of 

X Z ⟹ Z X
Y Z ⟹ Z Y

Constraint-Based Causal Discovery Algorithms

It learns the 
invariances!

http://dx.doi.org/10.1016/j.artint.2008.08.001


FCI Algorithm - Pipeline
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X W YZ

FCI Rules
(R1) − (R10)

X W YZ

Partial Ancestral Graph 
(PAG)

X W YZ

Skeleton

Conditional 
Independence Tests

True causal 
diagram

X W YZ

Complete Graph

 is not an ancestor of  or .Z X W
  and  are ancestors of .Z W Y

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the PAG 
using m-separation

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the ADMG 
using d-separation

By faithfulness, are correctly 
observed in the data

X ⊥⊥ W
X ⊥⊥ Y |Z, W

  is not confounded with .Z Y

Unknown Reality

V

       B non-ancestor of A

       A ancestror of B

       spurious association

A B ⟹
A B ⟹
A B ⟹

                selection bias A B ⟹



PAG: Representation of the Markov Equivalence Class
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X W YZ

Partial Ancestral Graph 
(PAG)

True  
(unknown)  

causal diagram

 is not an ancestor of  or .Z X W

  and  are ancestors of .Z W Y

  is not confounded with .Z Y

X W YZ

X W YZ

X W YZ

⋮ X ⊥⊥ W
X ⊥⊥ Y |Z, W

V
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Z YX

Underlying Causal Diagram Partial Ancestral Graph

Z YX Z YX

Z YX

X
Z

W
YA X

Z

W
YA

Z YX W

FCI
Data E.C.

YX ZWYX ZW

Z YX W

Fast Causal Inference (FCI) Algorithm



Conditional Independence Tests
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Gaussian errors and independent observations: partial correlation test

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test 
and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p. 804–13

R package: https://cran.r-project.org/web/packages/CondIndTests

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, 
Statistics in Medicine. 
R package: https://github.com/adele/FamilyBasedPGMs

Kernel-based non-parametric test:

Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample. 
R package: https://cran.r-project.org/web/packages/pcalg/

Gaussian errors and correlated observations (family data) :

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Likelihood ratio tests based on GLM

• Tsagris, M., Borboudakis, G., Lagani, V. et al.  (2018) Constraint-based causal discovery with mixed 
data. Int J Data Sci Anal 6, 19–30. (Link)


• R package: https://cran.r-project.org/web/packages/MXM/

https://cran.r-project.org/web/packages/CondIndTests
https://github.com/adele/FamilyBasedPGMs
https://cran.r-project.org/web/packages/pcalg/
https://doi.org/10.1007/s41060-018-0097-y
https://cran.r-project.org/web/packages/MXM/


Available Implementations of the FCI
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R Packages: 

• pcalg R package: 


- https://cran.r-project.org/web/packages/pcalg/


-  https://github.com/cran/pcalg/


• RPy-Tetrad (Wrapper in R): https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R


Python Packages: 

• Do-discover in PyWhy: https://github.com/py-why/dodiscover 


• Causal-Learn: https://causal-learn.readthedocs.io/en/latest/index.html 


• Py-Tetrad (Wrapper in Python): https://github.com/bd2kccd/py-causal

https://cran.r-project.org/web/packages/pcalg/
https://github.com/cran/pcalg/
https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R
https://github.com/py-why/dodiscover
https://causal-learn.readthedocs.io/en/latest/index.html
https://github.com/bd2kccd/py-causal
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Developments in Causal Discovery with Unobserved Confounding

• Ribeiro, A. H., & Heider, D. (2025). dcFCI: Robust Causal Discovery 
Under Latent Confounding, Unfaithfulness, and Mixed Data.  
arXiv preprint arXiv:2505.06542 (link). 
dcFCI R package: GitHub repository: @adele/dcFCI

Leverages a PAG-data 
compatibility score that 
supports heterogeneous 

variable types.

Causal Discovery with Robustness to Empirical Unfaithfulness

Causal Discovery of Cluster DAGs

• Anand, T. , Ribeiro, A. H., Tian, J., Hripcsak, G. & E. Bareinboim. (2025). 
Causal Discovery over Clusters of Variables in Markovian Systems.  
Columbia CausalAI Laboratory, Technical Report (R-128), June, 2025. (link).

Learns Equivalence Classes 
of Cluster DAGs (C-DAGs)  
under causal sufficiency

https://www.arxiv.org/pdf/2505.06542
https://github.com/adele/dcFCI
https://causalai.net/r128.pdf


Developments in Causal Discovery with Unobserved Confounding
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Going Beyond the Markov Equivalence Class:

1. Causal Discovery with Interventional Data

• Jaber, A., Kocaoglu, M., Shanmugam, K. and Bareinboim, E., (2020). Causal discovery from soft 

interventions with unknown targets: Characterization and learning. Advances in neural information 
processing systems, 33, pp.9551-9561.


• A. Li, A. Jaber, E. Bareinboim. Causal discovery from observational and interventional data across 
multiple environments. (2023) In Proceedings of the 37th Annual Conference on Neural Information 
Processing Systems — NeurIPS-23. 



Developments in Causal Discovery with Unobserved Confounding
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2. Causal Discovery with Background Knowledge


• Wang, T. Z., Qin, T. and Zhou, Z.H., (2022).  
Sound and complete causal identification with latent variables given local background 
knowledge. Advances in Neural Information Processing Systems, 35, pp.10325-10338.


• Bryan Andrews, Peter Spirtes, Gregory F. Cooper  (2020).  
On the Completeness of Causal Discovery in the Presence of Latent Confounding with 
Tiered Background Knowledge. Proceedings of the Twenty Third International 
Conference on Artificial Intelligence and Statistics, PMLR 108:4002-4011, 2020.

Going Beyond the Markov Equivalence Class:

• Ribeiro, A. H. Crnkovic, M., …, Heider, D., and Cerqueira, A. (2024).  
AnchorFCI: Harnessing Genetic Anchors for Enhanced Causal 
Discovery of Cardiometabolic Disease Pathways.  
Frontiers in Genetics 15:1436947. (Link) 
AnchorFCI R package — GitHub: @adele/anchorFCI

‣ Integrates known non-ancestralities  
e.g., Genotypes  Phenotypes≺

https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1436947/full
https://github.com/adele/anchorFCI
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3. Human-in-the-Loop Probabilistic Causal Discovery


• da Silva, T., Silva, E., Góis, A., Heider, D.,  Kaski, S., 
Mesquita, D., Ribeiro, A.H. (2023).  
Human-in-the-Loop  Causal Discovery under Latent 
Confounding using  Ancestral GFlowNets. 
arXiv:2309.12032 (Link) 


• da Silva, T., Silva, E., Góis, A., Heider, D.,  Kaski, S., 
Mesquita, D., Ribeiro, A.H.  (2024).  
Human-Aided Discovery of Ancestral Graphs.  
LXAI Workshop at Neural Information Processing Systems 
(NeurIPS 2024) — (Link).

Developments in Causal Discovery with Unobserved Confounding

https://arxiv.org/abs/2309.12032
https://openreview.net/pdf?id=PVOpWUJORs


Developments in Causal Discovery with Unobserved Confounding
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4. Causal Discovery in Linear Models

• Tashiro, T., Shimizu, S., Hyvärinen, A., & Washio, T. (2014). 

ParceLiNGAM: A causal ordering method robust against latent 
confounders. Neural computation, 26(1), 57-83.


• Wang, Y. S., & Drton, M. (2023). Causal discovery with 
unobserved confounding and non-Gaussian data. Journal of 
Machine Learning Research, 24(271), 1-61.

Relax the causal sufficiency 
assumption of LinGAN by  

Shimizu et al., 2006: 
order / ancestral identifiability 

under linear systems with  
non-gaussian error terms

FCI-CDC: causal direction 
criterion (CDC) allows pairwise 
orientation in (weakly) additive 
noise models with independent 

causal mechanisms.

5. Causal Discovery for Additive Noise Models

• Van Diepen, M. M., Bucur, I. G., Heskes, T., & Claassen, T. (2023). 

Beyond the Markov Equivalence Class: Extending Causal Discovery 
under Latent Confounding. In Conference on Causal Learning and 
Reasoning (pp. 707-725). PMLR.



Developments in Causal Discovery with Unobserved Confounding
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1. Causal Discovery with Cycles


• Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models 
with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915.


• Claassen, T.  &; Mooij, J.M.. (2023). Establishing Markov equivalence in cyclic directed graphs. 
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 
216:433-442, 2023.


2. Causal Discovery from Time-Series Data


• Gerhardus, A., & Runge, J. (2020). High-recall causal discovery for autocorrelated time series with 
latent confounders. Advances in Neural Information Processing Systems (NeurIPS 2020), 33, 
12615-12625.

Learning Dynamic Systems:



Causal Effect Identification  
Given a Causal Diagram
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Graphical Criteria, Do-Calculus, and ID-Algorithm



Classical Causality Pipeline from a Causal Diagram
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Inference 
Engine

3 P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

2 Causal Contraints

YX

Z

Observational Distribution

𝔼(y |do(x)) = ∑
z

𝔼(y |x, z)P(z)

Causal Modeling Causal Effect Identification Causal Effect Estimation

�̂�(y |do(x)) = ∑
z

�̂�((y |x, z) ̂P(z)

Observational 
Data

Structural knowledge 
available



YX

Z

The Effect Identification Problem
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Causal Effect Identifiability: The effect of  on  is said to be identifiable from a causal diagram  and the 
probability distribution  if  is uniquely computable, i.e., if for every pair of SCMs  and  
that induce  and ,  = .

X Y G
P(V) P(Y |do(X)) ℳ1 ℳ2

G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

 P(X, Y, Z)True Model ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

⋯  P(Y |do(X))

(Observed) (Inferred)(Unobserved)



The Effect Identification Problem
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In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

Identifiable Non-Identifiable

Causal Effect Identifiability: The effect of  on  is said to be identifiable from a causal diagram  and the 
probability distribution  if  is uniquely computable, i.e., if for every pair of SCMs  and  
that induce  and ,  = .

X Y G
P(V) P(Y |do(X)) ℳ1 ℳ2

G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))



Tools for Causal Identification
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1. Truncated Factorization / G-computation formula


2. Graphical criteria 

1. Parent adjustment

2. Backdoor Adjustment 

3. Front-door Adjustment


3. Do-Calculus (a.k.a Causal Calculus)

4. Identify Algorithm (a.k.a. ID algorithm)

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. http://
dx.doi.org/10.1017/CBO9780511803161

Markovian 
Models

A few interesting  
(albeit still constrained)  

scenarios 

General  
Semi-Markovian   

Scenarios 

http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1017/CBO9780511803161


Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z Z = {Z1, Z2}

Z = {Z1}

X = {X}
Y = {Y} YX

Z2

Z1



Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z Z = {Z1, Z2}

Z = {Z1}

X = {X}
Y = {Y} YX

Z2

Z1

Z3



YX

Z2

Z1

Z3

Z = {Z1, Z3}

Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z

Z = {Z1}

X = {X}
Y = {Y}

Z = {Z1, Z3}



YX

Z2

Z1

Z3

Z = {Z1, Z2, Z3}

Identification via Backdoor Criterion
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Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z

Z = {Z1}

X = {X}
Y = {Y}

Z = {Z1, Z3}



Estimation via Propensity Scores
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= ∑
z

P(y, x, z)
P(x |z)

Only if  is  
admissible for adjustment,  

Propensity Score can be used 
to estimate .

Z

P(y |do(x))

Consider the case in which the causal effect of  on  is identifiable through 
adjustment over a set of variables , i.e.,

X Y
Z

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

For  is binary/categorial:  
logistic/multinomial regression 

or ML-based classification  
For  continuous: ML-based 

regression techniques.

X

X

= ∑
z

P(y |x, z)P(x |z)P(z)
P(x |z)

Z = {Z1, Z3}

Z = {Z1}

YX

Z3

Z1

Z2

The interventional joint distribution can be easily derived by reweighing the 
observational joint distribution with the inverse of the propensity score!



Inverse Probability Weighting (IPW)
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YX

Z

P(X |Z) ≠ P(X)

After reweighing the observational samples, we obtain pseudo interventional samples: 

Original Sample
P(X |Z)

X=0

(Control Group)

1/4 4
2/3 1.5

X = 1

(Treated Group)

3/4 1.33
1/3 3

1
P(X |Z)

Imbalanced

P(X |Z) = P(X)
YX

Z

Pseudo interventional Sample

X=0

(Control Group)

X = 1

(Treated Group)

Balanced

Reweighing samples 

with 
1

P(X |Z)



Inverse Probability Weighting (IPW)
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The Average Treatment Effect (ATE) of a binary treatment can be estimated as:




=  

̂E(Y |do(X = 1)) − ̂E(Y |do(X = 0))

1
N

N

∑
i=1 (

yi1{xi=1}

̂P(X = 1 |zi)
−

yi1{xi=0}

̂P(X = 0 |zi) )

This gives us the following estimator of , from a sample : E(Y |do(x)) {xi, yi, zi}
N
i=1

 = ̂E(Y |do(x))
1
N

N

∑
i=1

yi1{xi=x}

̂P(xi |zi)

The mean of all values , 
inversely weighted according 

to the propensity score.

yi



Many Scenarios Beyond Backdoor …
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YX

Z2

Z1

Napkin

And many others…. 

YX

Z2

Z1

M

Unnamed

P(y |do(x)) =
∑z2

P(x, y |z1, z2)P(z2)

∑z2
P(x |z1, z2)P(z2)

P(y |do(x)) = ∑
z2,z3

P(y |x, z1, z2, z3)P(z2)

∑
z1

P(z3 |x, z1)P(z1)

YX

Z

M

Conditional Front-Door

P(y |do(x)) = ∑
m,z

P(m |x, z)

∑
x′ 

P(y |m, x′ , z)P(x′ , z)



Causal Effect Identification (ID) Algorithm

90

Inference 
Engine

3 Probability Distributions
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National 
Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

ID-Algorithm and many 
recent generalizations.
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 http://causalfusion.net
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 http://causalfusion.net



Identification of Causal Effects from C-DAGs
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Inference 
Engine

3 Data
P(x, m1, m2, m3, y)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
m123

P(m123 |x) ∑
x′ 

P(y |m123, x′ )P(x′ )

2 C-DAG

YX M1,2,3

Available 
(Observational) 

Distribution

Inferred 
(Interventional) 

Distribution 👍

Anand, T. V.*, Ribeiro A. H.*, Tian, J., & Bareinboim, E. (2023). Causal Effect Identification in Cluster DAGs. In 
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence.

 Extension of the ID and Ctf-ID 
algorithms to C-DAGs.



Effect Identifiabiliy given a C-DAG
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An identifiable effect in a C-DAG  is identifiable in all compatible 

causal diagrams  using the same identification formula!
GC

G

P(y |do(x)) =

∑
z1,z2

P(y |x, z1, z2)P(z1, z2)

P(y |do(x)) =

∑
z1,z2

P(y |x, z1, z2)P(z1, z2)

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

GC

YX

Z1 Z2

G1

YX

Z2Z1

G2

YX

Z2Z1

Simple evaluation of the validity 
of the Backdoor Criterion / 
Conditional Exchangeability



Effect Non-Identifiabiliy given a C-DAG
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A non-identifiable effect in a C-DAG  implies that there exists at least 
one compatible causal diagrams  in which the effect is non-identifiable.

GC
G

YX

Z1 Z2

GC

YX

Z2Z1G2

G1

YX

Z2Z1

 is not identifiableP(y |do(x))

 is 
not identifiable
P(y |do(x))

P(y |do(x)) =

∑
z1,z2

P(y |x, z1, z2)P(z1, z2)

Simple evaluation of a violation 
of the Backdoor Criterion / 
Conditional Exchangeability



Advances on Effect Identification given a Causal Diagram
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Identification from observational and experimental data: 

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In 
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. 


Identification of stochastic/soft (and possibly imperfect) interventions:


Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: Causal effect identification and surrogate 
experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY. AAAI Press. 


General graphical counterfactual identification: 

Correa, J., Lee, S., Bareinboim. E. (2021) Nested Counterfactual Identification from Arbitrary Surrogate Experiments. 
In Proceedings of the 35th Annual Conference on Neural Information Processing Systems 


Correa, J. D., & Bareinboim, E. (2025). Counterfactual graphical models: Constraints and inference.  
In Forty-second International Conference on Machine Learning.



Advances on Effect Identification given a Causal Diagram
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Identification and Estimation via Deep Neural Networks: 


Xia, K., & Bareinboim, E. (2024, March). Neural causal abstractions. In  Proceedings of the AAAI 
Conference on Artificial Intelligence (Vol. 38, No. 18, pp. 20585-20595).


Xia, K., Pan, Y.,and Bareinboim, E. (2023) Neural Causal Models for Counterfactual Identification and 
Estimation. In Proceedings of the 11th International Conference on Learning Representations.


Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural connection: Expressiveness, 
learnability, and inference. Advances in Neural Information Processing Systems, 34. 


Partial Effect Identification: 


Kirtan Padh, Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus. (2022). Stochastic 
Causal Programming for Bounding Treatment Effect. Proceedings of the Second Conference on Causal 
Learning and Reasoning, PMLR 213:142-176

Zhang, J., Tian, J. & Bareinboim, E.. (2022). Partial Counterfactual Identification from Observational and 
Experimental Data. Proceedings of the 39th International Conference on Machine Learning.



98

Can we identify causal effects from the equivalence class?

Effect Identification: 

Recently, we proposed complete calculus and algorithms for the identification 
of marginal and conditional causal effect in PAGs!

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm, 
and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS. (Link)

Causal Identification from PAGs

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and construction of 
adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research 18 (2018) 1-62

For Covariate Adjustment, we can use the Generalized Adjustment Criterion.

https://causalai.net/r86a.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf


Effect Identification in Markov Equivalence Classes
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Inference 
Engine

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 
Distribution

Inferred 
(Interventional) 
Distribution 👍

Can be constructed in a fully 
data-driven way!

Observational Distribution



Identification via Adjustment in Markov Equivalence Classes
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Adjustment 
Criterion

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 
Distribution

Inferred 
(Interventional) 
Distribution 👍

Observational Distribution

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and 
construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning 
Research 18 (2018) 1-62

Identification is possible only when the 
Generalized Adjustment Criterion applies.

https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf


General Identification in Markov Equivalence Classes
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IDP / CIDP

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) =
P(y1, y4, y5 |x1) . P(y2y3, y4, y5 |x2)

P(y4, y5)

2 PAG

X1

X2

Y1

Y2 Y3 Y4

Y5
Available 

(Observational) 
Distribution

Inferred 
(Interventional) 

Distribution 👍
Observational Distribution

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - 
Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information 
Processing Systems (NeurIPS 2022).

Complete algorithms,  
available at the PAGId R package:

https://github.com/adele/PAGId

https://github.com/adele/PAGId


102

Gut Microbiota's Causal Role in Major Depressive Disorder

Differential Abundance Analysis:

Obesity-specific causal effect of Eggerthella on MDD

ACE: 0.1683  
95% CI: [0.06812, 0.2684]

Obesity-specific causal effect of Hungatella on MDD

ACE: 0.1984 
95% CI:  [0.06607, 0.3307]

DFG FOR2107 dataset, including microbiome and clinical data from 1,269 patients. 

Causal Discovery:

Fehse L.*, Ribeiro, A.H.*, Winter, N. R., , Dominik Heider, Tim Hahn. (2024) From Gut to Mind: Dissecting the Causal Contribution 
of Gut-Microbiota to Major Depressive Disorder in Humans. MedRxiv Preprint, DOI: 10.1101/2024.12.05.24318549

…

FCI with a 
robustness-
enhancing 
strategy.

* Equal contribution

https://for2107.de/
https://www.medrxiv.org/content/10.1101/2024.12.05.24318549v1.full-text


Causal Inference Workflow
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

Causal Inference Workflow



Many other Topics in Causal Inference
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1. Causal Representation Learning & Causal Abstraction

2. Causal Reinforcement Learning

3. Data-Driven Covariate Selection for Adjustment

4. Individual Treatment Effect (ITE) Estimation

5. Partial Effect Identification

6. Fairness & Mediation Analysis

7. Causal Design of Experiments

8. Many more… 

I am happy to discuss more if you are interested! :)



Educational Resources
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• Causality Lectures on YouTube       : @adelehelena 

‣ Complete course (13 lectures at HHU): Playlist 

‣ 3-hour tutorials at summer schools: 

- Lisbon Machine Learning School (LxMLS): Playlist (2021-2025) 

- Nordic Probabilistic AI School (ProbAI): Playlist (2023-2024) 

- European Summer School on Artificial Intelligence (ESSAI 2024): Playlist 

• Tutorial on GitHub      : @adele  Causality-Tutorial 

‣ Causal Discovery — Google Colab Notebook: Link 

‣ Causal Effect Identification — Google Colab Notebook: Link

→

https://www.youtube.com/@adelehelena
https://youtube.com/playlist?list=PLIxSri8f3YTXfOQg1-3IbM_OpqDoahDCt&si=JkIzTPauawDoJJCS
https://youtube.com/playlist?list=PLIxSri8f3YTXrk4kZuoTV7TCTZWwIW6ut&si=9-bAxhgTOapYrQwv
https://youtube.com/playlist?list=PLIxSri8f3YTWW4ZtLIChPcSF_KnchLt-b&si=mxNRG4VWtJGkuAqe
https://youtube.com/playlist?list=PLIxSri8f3YTWzjobCzBcyRlrE5C81gITH&si=-dDiPsCFhlcKmr6e
https://github.com/adele/
https://github.com/adele/Causality-Tutorial/
https://colab.research.google.com/github/adele/Causality-Tutorial/blob/main/Causal%20Discovery/CausalDiscovery_FCI.ipynb
https://colab.research.google.com/github/adele/Causality-Tutorial/blob/main/Causal%20Effect%20Identification/CausalEffectIdentification.ipynb


Thank you! :)
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adele.ribeiro@uni-muenster.de 

Feel free to reach out to me if you have any questions:

mailto:adele.ribeiro@uni-muenster.de

