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Supervised Learning
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Why Study Linear Models?

® In 2025, deep neural networks (DNNs) are ubiquitous!
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Why Study Linear Models?

® In 2025, deep neural networks (DNNs) are ubiquitous!
® Why a lecture on linear models?

v" Underlying machine learning (ML) core concepts are the same.
v" Theory (statistics and optimization) is easier to understand.

v~ Still widely used (specially if data is scarce)

v They are a component of DNNs.

v" Natural starting point for studying ML.
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Good Advice

Eduardo Ordax - 2nd + Follow
w Generative Al Lead @ AWS  (90k+) | Startup Advisor | Public ...
3d - Edited - ®

Math Is All You Need! (Or at Least, the Best Place to Start for Al)

| recently came across this advice:

“Don’t get an Al degree—the curriculum will be outdated before you graduate.
Instead, build a strong foundation in math, statistics, or physics, and stay up to
date with Al through code-focused books, blogs, and research papers.”

In short, if you're solid in math and willing to refine your coding skills, you'll be a
valuable asset to any top Al lab.
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Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks

/}/)

0)¢

i
“q
2

PO

X1
‘.~
@
0O
2

Linear Classifier

M. Figueiredo (IST) Linear Models




Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks
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Inputs and Outputs

® [nputx e X
v’ e.g., a news article, an email message, a face image, a collection of

laboratory test results, features of a credit card transaction, features of
a car, features of a house, ...
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Inputs and Outputs

® [nputx e X

v’ e.g., a news article, an email message, a face image, a collection of
laboratory test results, features of a credit card transaction, features of
a car, features of a house, ...

® Qutputy €Y

v e.g., fake/true, spam/legitimate, an identity, a diagnostic,
fraud/legitimate, fuel consumption, price, ...

® Input/output pair: (xz,y) € X x Y
v/ e.g., a news article together with a topic
v’ e.g., a sentence together with its translation
v e.g., a sequence of words (tokens) together with the next word

v/ e.g., an image partitioned into segmentation regions
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Optimal Decisions
® Goal: find a “good” decision function: h: X — Y
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Optimal Decisions

Goal: find a “good” decision function: h: X — Y

Ideal situation: joint distribution fx y (z,y) is known.

We know how to assess decisions, i.e., we have a loss function:

L(y,y) = loss of deciding y if the truth is y

Optimal decision functions minimize the expected loss or risk:

h* = arg minEXVY [L(Y,h(X))]
= arg i / / Fxxy (@,y)L{y, h(z)) dy da,

where H is some set of allowed functions.
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Optimal Decisions

Goal: find a “good” decision function: h: X — Y

Ideal situation: joint distribution fx y (z,y) is known.

We know how to assess decisions, i.e., we have a loss function:

L(y,y) = loss of deciding y if the truth is y

Optimal decision functions minimize the expected loss or risk:
h* = arg minEXVY [L(Y,h(X))]
=argpin [ [ @ )i i) dyde

where H is some set of allowed functions.

® Unfortunately, fx y(x,y) is seldom known: use supervised learning
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Supervised Learning

® Rather than knowing fx y(x,y), ...
® ... we have a collection of input/output pairs (training data)

D:(wl’yl)v'“a(w'nnyn) G:X:X‘% (wz Gxa Yi G‘H)
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Supervised Learning

Rather than knowing fx v (z,y), ...
® ... we have a collection of input/output pairs (training data)

D= (wl’yl)v sy (wnnyn) € X x 1?’ (wz € :X:, Yi € y)

Same goal: learn a predictor/decision function h: X — Y.

Two standard approaches:

v' Generative: estimate fx y(z,y) from D; go back to the previous slide.

v Discriminative: replace the expected risk with the empirical risk,

1 n
= '—gL ; ; irical risk minimization — ERM
h* = arg min — 2 (yi, h(x;))  (empirical risk minimization )
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What about self-supervised learning?
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What about self-supervised learning?

® In its most basic form, it's just supervised learning with
programmatically defined training outputs.
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What about self-supervised learning?

® In its most basic form, it's just supervised learning with
programmatically defined training outputs.

® (lassical example: next word prediction.
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Regression, Classification, and Variants

® Regression: quantitative Y. Classification: categorical Y (no order).
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Regression, Classification, and Variants

Regression: quantitative Y. Classification: categorical Y (no order).

Simple regression: Y =R, orY =10, 1], or Y =R, or ...
v e.g., given a news article, how much time a user will spend reading it?

Multivariate/multiple regression: Y = RE or Y=RE orYy = Ag, ..

v e.g., denoise an image, estimate class probabilities, ...

® Binary classification: Y = {0, 1}, or Y = {a, b}, ...
v e.g., spam detection, fraud detection, target detection, ...

e Multi-class classification: Y ={1,2,..., K} (order is irrelevant!)
v e.g., topic classification, image classification, word prediction, ...
® Structured classification: Y exponentially large and structured

v’ e.g., machine translation, caption generation, image segmentation, ...
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Feature Representations

® Feature engineering is (was?) an important step for linear models:
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Feature Representations
e Feature engineering is (was?) an important step for linear models
v' Bag-of-words features for text, parts-of-speech, ...

v' SIFT features and wavelet representations in computer vision
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Feature Representations

e Feature engineering is (was?) an important step for linear models
v' Bag-of-words features for text, parts-of-speech, ...

v' SIFT features and wavelet representations in computer vision

v Other categorical, Boolean, continuous features,
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Feature Representations

e Feature engineering is (was?) an important step for linear models
v' Bag-of-words features for text, parts-of-speech, ...

v SIFT features and wavelet representations in computer vision

V" Other categorical, Boolean, continuous features,

v Decades of research in machine learning, natural language processing,
computer vision, image analysis, speech processing, ...
. -




Feature Representations
® Feature represent information about an “object” «
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Feature Representations

® Feature represent information about an “object” «

Typical approach: a feature map ¢ : X — R?

® ¢(x) is a (maybe high-dimensional) feature vector

Feature vectors may mix categorical and continuous features

Categorical features are often reduced to one-hot binary features:

K
1 ,0,...,0) € {0, 1} represents class y

position y

ey :=(0,...,0,

® Categorical features (e.g., words in a sentence) may be represented by
vectors (embeddings).
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Representation/Feature Engineering vs Learning

® Feature engineering (FE) is “alchemy”:

v’ it requires deep domain knowledge
(linguistics in NLP, vision in computer vision, ...)

v" usually very time-consuming
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Representation/Feature Engineering vs Learning

® Feature engineering (FE) is “alchemy”:

v’ it requires deep domain knowledge
(linguistics in NLP, vision in computer vision, ...)

v" usually very time-consuming

FE allows incorporating knowledge, it is a form of inductive bias

FE is still widely used in practice, namely in data-scarce scenarios

Modern alternative: representation learning a.k.a. deep learning

Monday's lecture
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Outline

® Regression
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Linear Regression: A Picture
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Linear Regression: A Picture

1 e opata .
m—Linear Regression

“When you're fundraising, it's Al.
When you're hiring, it's ML.

When you're implementing, it's just linear regression” (B. Schwartz)
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Linear (Nonlinear) Regression
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Linear (Nonlinear) Regression
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Regression

® In a nutshell: build a “machine” that predicts/estimates/guesses a
quantity y from of other “quantities” / “features” z1,...,x)

T
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Regression
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® Fundamental tool in data analysis, thus in much of science (biology,
social sciences, economics, physics, ...) and engineering.
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Regression

® In a nutshell: build a “machine” that predicts/estimates/guesses a
quantity y from of other “quantities” / “features” z1,...,x)

xry
)

X = : ? Y
Tp

® Fundamental tool in data analysis, thus in much of science (biology,
social sciences, economics, physics, ...) and engineering.

® Learning/training: given a collection of examples (training data)

D= ((mla y2)7 X (mn’ y”))

.find the “best” predictor/decision function h € H.
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Regression

® In a nutshell: build a “machine” that predicts/estimates/guesses a
quantity y from of other “quantities” / “features” z1,...,x)

xry
)

X = : ? Y
Tp

® Fundamental tool in data analysis, thus in much of science (biology,
social sciences, economics, physics, ...) and engineering.

® Learning/training: given a collection of examples (training data)

D= ((mla y2)7 X (mn’ y”))

.find the “best” predictor/decision function h € H.

® Notation: bold = vector or matrix (e.g. «, X).
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Linear Regression
® H only contains linear (affine) functions:

p
h(:l)) = wo + Z W;T;
j=1
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Linear Regression

® H only contains linear (affine) functions:

p
h(a:) ZWO+ZWj$j=’U}0—|—wT:1j:’U)0—|—<w’gc> =wo+w-x
j=1
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Linear Regression

® H only contains linear (affine) functions:

P
h(a:) :w0+zwjxj :w0+’wT¥13=wo+ <’w,CC> =wo+w-x
j=1
e Standard loss: L(y,9) = (y — 9)2 (why? what assumptions?)
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Linear Regression

® H only contains linear (affine) functions:

P
h(a:) =wo+ijxj =w0+’wT¥13=wo+ <’w,CC> =wo+w-x
j=1
e Standard loss: L(y,7) = (y — 9)? (why? what assumptions?)

® Empirical risk and residual sum of squares (RSS)

n

1 1
Remp[w, wo] = — > (wo + w'z; —y;)® = -~ RSS(w, wo)

=1 Ui
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Linear Regression

® H only contains linear (affine) functions:

P
h(a}) =wo+ijxj =w0+’wT¥13=wo+ <w,33> =wo+w-x
j=1
e Standard loss: L(y,7) = (y — 9)? (why? what assumptions?)

® Empirical risk and residual sum of squares (RSS)

n

1 T 9 1
Remp[wv wO] = ﬁ z}(wﬂ +w” x; _yl) = ERSS(UJ’ wO)
= Ui
® Empirical risk minimization (ERM) = least squares (LS) regression

(’1217 wO)ERM = (’Li], wO)LS = arg min Remp[w7 wO]
w,wo
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Linear Regression: Statistical Assumptions

® The inputs @y, ..., x, are seen as deterministic, given.
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Linear Regression: Statistical Assumptions
® The inputs @y, ..., x, are seen as deterministic, given.

® The y1, ...,y are conditionally independent, given @1, ..., ;.
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Linear Regression: Statistical Assumptions
® The inputs @y, ..., x, are seen as deterministic, given.
® The y1, ...,y are conditionally independent, given @1, ..., ;.

® Each y; is a Gaussian noisy version of a “clean” value wy + w” x;

Y; = wo +wlx; + N;,  where N; ~ N(0,0%)
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Linear Regression: Statistical Assumptions

The inputs @1, ..., ¢, are seen as deterministic, given.

The y1, ..., yn are conditionally independent, given @1, ..., ;.

Each y; is a Gaussian noisy version of a “clean” value wy + w” x;

Y; = wo+w'x; + N;, where N; ~ N(0,0?)

Thus, fyx (yil®i) = N(yilwo + w’x;, o?)
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Linear Regression: Statistical Assumptions

The inputs @1, ..., ¢, are seen as deterministic, given.

The y1, ..., yn are conditionally independent, given @1, ..., ;.

Each y; is a Gaussian noisy version of a “clean” value wy + w” x;

Y; = wo+w'x; + N;, where N; ~ N(0, 02)

Thus, fyx (yil®i) = N(yilwo + w’x;, o?)
Likelihood

n

lea“'yyn (yI’ "'ayn|m1a vy L, W, Wo, 02) = HN(yl|w0 + mehO.Q)
=1
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Linear Regression: Statistical Assumptions

The inputs @1, ..., ¢, are seen as deterministic, given.

The y1, ..., yn are conditionally independent, given @1, ..., ;.

Each y; is a Gaussian noisy version of a “clean” value wy + w” x;

Y; = wo+w'x; + N;, where N; ~ N(0, 02)

Thus, fyx (yil®i) = N(yilwo + w’x;, o?)

Likelihood and log-likelihood function

n
fyla“'yyn (yI’ "'ayn|m1a vy L, W, Wo, 02) = HN(yl|w0 + mehO.Q)
=1

1 n
108 fyvy,. Yo (Y15 - Yn |1, oo By W, w0, 07) = K=53 > (wo + w'wi—y;)?
i=1
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Linear Regression: Statistical Assumptions

The inputs @1, ..., ¢, are seen as deterministic, given.

The y1, ..., yn are conditionally independent, given @1, ..., ;.

Each y; is a Gaussian noisy version of a “clean” value wy + w” x;

Y; = wo+w'x; + N;, where N; ~ N(0, 02)

Thus, fyx (yil®i) = N(yilwo + w’x;, o?)

Likelihood and log-likelihood function

n
fyla“'yyn (yI’ "'ayn|m1a vy L, W, Wo, 02) = HN(yl|w0 + wahO.Q)
=1

1 n
108 fyvy,. Yo (Y15 - Yn |1, oo By W, w0, 07) = K=53 > (wo + w'wi—y;)?
i=1

¢ Maximum likelihood (ML) estimate: (w, wo)mL = (W, Wo)erm
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Linear Regression: Another Picture

\g

Linear least squares fitting with
X € IR%. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y.

From: Hastie, Tibshirani, Friedman, “The Elements of StatisticaIDLear%ng”, Springer, 2099.

D¢
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Linear Regression: Getting Rid of wj
1
T41

e Replace each original @; with z; = | . | € RP*!

Ojip
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Linear Regression: Getting Rid of wj

1
. . i1 n
® Replace each original @; withx; = | . | e R?
Lip
wo
. . w1 1
® Let w now denote a (p + 1)-dimensional vector: w = | . | € RPT
Wp
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Linear Regression: Getting Rid of wj

1
. . i1 m
® Replace each original @; withx; = | . | e R?
Lip
wWo
. . w1 L
® Let w now denote a (p + 1)-dimensional vector: w = | . | € RPT
Wp
® The offset/bias wyq is absorbed into w” x;, thus
n
. . T, \2
wis = arg Hil;n Z(yi —w’ x;)

=1
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Linear Regression: Getting Rid of wj

1
. . i1 m
® Replace each original @; withx; = | . | e R?
Lip
wo
. wy L
® Let w now denote a (p + 1)-dimensional vector: w = | . | € RPT
Wp
® The offset/bias wyq is absorbed into w” x;, thus
n
. . T, \2
wis = arg nﬂgn Z;(yi —w’ x;)
1=

® From now on, we will mostly ignore wy.
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Linear Regression: Vector Notation

® | east squares regression,

n

wis(y) = arg min > (y; - z] w)? = arg min ||y — Xwl3
i=1
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Linear Regression: Vector Notation

® | east squares regression,

n

~ . T 2 . 2
ws(y) = arg min (yi — x; w)* = arg min ||y — Xw|5
wERP 4 weRP
=1
where X is the design matrix
zy T oo T (1
T
w :L‘ .« .. :L'
2 21 2p Y2
X = . = ] ) ] c R"XP y= . cR"
T
Tn Tnl ' Tnp Yn
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Linear Regression: Vector Notation

® | east squares regression,

n
T

ws(y) = arg min (y; — &l w)? = arg min ||y — Xw|3
weRP

weRP
i=1

where X is the design matrix

T
Ty Tir -t Tip
T
X=|.1=1". . | eR™P
T
x;, Tnl Tnp

® Gradient: Vy |y — Xw|3=2XT(Xw —y)

M. Figueiredo (IST) Linear Models
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Linear Regression: Vector Notation

® | east squares regression,

n
T

ws(y) = arg min (y; — &l w)? = arg min ||y — Xw|3
weRP

wERP 4

1=

where X is the design matrix

T
Ty Tir -t Tip
T
X=|.1=1". . | eR™P
T
x;, Tnl Tnp

® Gradient: Vy |y — Xw|3=2XT(Xw —y)

® Equating to zero,

wis(y) = solution, (X (Xw —y) =0)

M. Figueiredo (IST) Linear Models
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Linear Regression: Vector Notation

® | east squares regression,

n

wis(y) = arg min i:1(yz- — @] w)? = arg min [ly — Xw|3
where X is the design matrix
l‘{ 11 0 Tip 1
X — :1:2T _ x-21 :c.gp c R y = 3/.2 c R™
T Tol Ty Un
® Gradient: Vylly — Xw|3 =2XT(Xw —y)
® Equating to zero,
wis(y) = solution, (X7 (Xw —y) =0)= (XTX)leTy
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Linear Regression: Vector Notation

® | east squares regression,

n

wis(y) = arg min 1(%’ — @] w)? = arg min [ly — Xw|3
i—=
where X is the design matrix
:c{ 11 0 Tip 1
X — .’Bg _ x-21 $.2p c R y = 3/.2 c R™
mz; Tpl Ty Un,

® Gradient: Vy |y — Xw|3=2XT(Xw —y)

® Equating to zero,
s (y) = solutiony, (X7 (Xw —y) = 0) = (XTX)—1XTy

. if XTX is invertible, i.e., rank(X) = p, requiring n > p.
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A Classic: Coefficient of Determination R?
® Total sum of squares: TSS = Y7 | (y; — §)?

(variance xn)

= = = E DA
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A Classic: Coefficient of Determination 1>
® Total sum of squares: TSS =Y"" | (y;

—9)?
® Sum of squared residuals: SSR = >"% | (y; — wTx;)?

(variance xn)

o & = = DA
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A Classic: Coefficient of Determination R2

® Total sum of squares: TSS = Y7 | (y; — §)? (variance xn)
® Sum of squared residuals: SSR = >"% | (y; — wTx;)?

e (Coefficient of determination:

R?=1- % =1—FVU (1 — fraction of variance unexplained)
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A Classic: Coefficient of Determination R?

® Total sum of squares: TSS = Y7 | (y; — §)? (variance xn)
® Sum of squared residuals: SSR = >"% | (y; — wTx;)?

e (Coefficient of determination:

RP=1- % =1—FVU (1 — fraction of variance unexplained)
¥ Tss £ ssR
Y !

u}
o)
I
i
it
N
»
?
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A Classic: Coefficient of Determination R2

® Total sum of squares: TSS = Y7 | (y; — §)? (variance xn)
® Sum of squared residuals: SSR = >"% | (y; — wTx;)?

e (Coefficient of determination:

RP=1- 551 =1—FVU (1 — fraction of variance unexplained)

TSS

SSR 3

R%0.06 REXTHOR, THE DOG-BEARER
T DONT TRUST UNERR REGRESSIONS WHEN ITS HARDER

> X ™ GUESS THE DIRECTION OF THE CORRELATION FRorM THE
- - SCATTER PLOT THAN TO FIND NELJ CONSTELLATIONS ON IT.

it
€

[} = = =
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The Geometry of Linear Regression

® Predicted values at the sampled points:

~ A -1
¥=Xuwis(y) = X(X'X) X" y=Py

hat matrix P € R**"
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The Geometry of Linear Regression

® Predicted values at the sampled points:

~ ~ —1
9= Xuis(y) = X(XTX) XTJ y = Py

hat matrix P € R**"

® Matrix P is a projection matrix; it is idempotent, PP = P:

1

PP=X(X"X)"'XTx(X"X)"'xT = x(X"X)"'xT=P
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The Geometry of Linear Regression

® Predicted values at the sampled points:

N ~ —1
y=Xs(y) = X(X'X) X" y=Py

hat matrix P € R"*"
® Matrix P is a projection matrix; it is idempotent, PP = P:

IxT_p

PP=X(XTX)"'XTx(Xx"X)"'x" = X (X"X)"
® Clearly, y € range(X) (span of the columns of X); in fact,

Py = X (argmin |y — Xw|?3)

~~

w) 5(y)
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The Geometry of Linear Regression

® Predicted values at the sampled points:

N ~ —1
y=Xs(y) = X(X'X) X" y=Py

hat matrix P € R**"

® Matrix P is a projection matrix; it is idempotent, PP = P:

IxT_p

PP=X(XTX)"'XTx(Xx"X)"'x" = X (X"X)"
® Clearly, y € range(X) (span of the columns of X); in fact,

Py=X inly — Xwl3) = i — z|3
y =X (argmin [ly - Xwl|l3) =arg__min ly - 2]

~~

w) 5(y)
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The Geometry of Linear Regression

® Predicted values at the sampled points:

N ~ —1
§=Xwis(y) = X(X'X) X" y=Py

hat matrix P € R**"

® Matrix P is a projection matrix; it is idempotent, PP = P:

IxT_p

PP=X(XTX)"'XTx(Xx"X)"'x" = X (X"X)"
® Clearly, y € range(X) (span of the columns of X); in fact,

Py=X inly — Xwl3) = i — z|3
y =X (argmin [ly - Xwl|l3) =arg__min ly - 2]

~~

w) 5(y)

i.e., the orthogonal projection onto range(X).
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Geometry of Linear Regression: Euclidean Projection
This picture is in R”

Ol. opace(Ay, A &)
[} = QA
M. Figueiredo (IST) Linear Models



Going Non-Linear

® To express non-linearities, just replace  with ¢(x),

Po(x)
¢:RP R ¢(x) = : (typically ¢o(z) = 1)
$q—1(x)
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Going Non-Linear

® To express non-linearities, just replace  with ¢(x),

Po(x)
¢:RP R p(x)=| (typically ¢o(a) = 1)
ba-1(x)

® Components of ¢ often called features, and ¢ a feature map.
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Going Non-Linear

® To express non-linearities, just replace & with ¢(x),

Po(x)
¢:RP R ¢(x) = : (typically ¢o(z) = 1)
$q—1(x)

® Components of ¢ often called features, and ¢ a feature map.

® E.g., final layer of a deep network:
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Going Non-Linear (but staying linear)
® To express non-linearities, just replace  with ¢(x),

$o(x)
¢:RP >R p(z) = : (typically ¢o(z) = 1)
¢d—1(x)
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Going Non-Linear (but staying linear)
® To express non-linearities, just replace & with ¢(x),
po(x)
¢:RP =R g(x)=| (typically ¢o(z) = 1)
ba-1(x)
® The LS criterion becomes
N o . T 2
wis = arg%n;(yz w' ¢(x;))

— argmin|ly — Xw|3
w

re where the design matrix X is now
po(x1) -+ Pa-1(x1)
X = : . : € R4
do(xn) -+ Pa—1(xn)
LxMLS 2025  33/118



Going Non-Linear (but staying linear)
® To express non-linearities, just replace & with ¢(x),
po(x)
¢:RF =R o(x)=| (typically go(a) = 1)
ba-1(x)
® The LS criterion becomes
n
Wi s = argmin ;(yi —w’ ¢(x;))?
1=
= argmin ||y — Xw|3 = (XTX)_IXTy
w
re where the design matrix X is now
do(x1) -+ Pa—1(x1)
X — : - : c Rnxd
do(®n) - Pa-1(Tn)
LxMLS 2025  33/118



Example: Polynomial Regression
® QOrder-k polynomial regression in R:

o(z) =1, z, 2*,

L

o & = = o
M. Figueiredo (IST) Linear Models



Example: Polynomial Regression
® Order-k polynomial regression in R:
o(x)=[1, z, 22, ..., 27T
® Order-k polynomial regression in R?:
o(x) = [1, 1, To, 23, 2129, T3, ..., zlwg_l, J;S]T

...all monomials of order up to k
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Example: Polynomial Regression
® Order-k polynomial regression in R:
o(x)=[1, z, 22, ..., 27T
® Order-k polynomial regression in R?:
o(x) = [1, 1, To, 23, 2129, T3, ..., zlwg_l, xS]T
...all monomials of order up to k

® Order-k polynomial regression in R?:

¢(x) = “vector with all monomials of degree up to k" € R?
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Example: Polynomial Regression

® Order-k polynomial regression in R:
o(x)=[1, z, 22, ..., 27T
® Order-k polynomial regression in R?:
d(x) = [1, 1, zo, 23, 2129, T3, ..., zlzvg_l, 57

...all monomials of order up to k

Order-k polynomial regression in R?:

¢(x) = “vector with all monomials of degree up to k" € R?

which has dimension

_(p+R) _(p+k)_ ptkyE
1= ("1") = = ()

k k! p! k

...exponential in k
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Other Types of Non-Linear Regression

1
e Radial basis functions (RBF): ¢;(z) = ¢(a—y|:p - cj|\2)
J
...with fixed centers ¢; and widths o;
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Other Types of Non-Linear Regression

1
e Radial basis functions (RBF): ¢;(z) = w(a—um - cju2)
J
...with fixed centers ¢; and widths o;

® Typical choices:

v Gaussian RBF (GRBF): ¢(r) = exp(—7?)

v Thin plate spline RBF (TPSRBF): ¢(r) = r?logr

® Spline regression: each ¢; is a piece-wise polynomial function.
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Other Types of Non-Linear Regression

1

Radial basis functions (RBF): ¢;(x) = w(a—um - cjug)
J

...with fixed centers ¢; and widths o;

Typical choices:

v Gaussian RBF (GRBF): ¢(r) = exp(—7?)

v Thin plate spline RBF (TPSRBF): ¢(r) = r?logr

Spline regression: each ¢; is a piece-wise polynomial function.

Kernels: more later.
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Example of Gaussian RBF Regression

<N etian Appeaximalion

) ' \ \ |
50 30 bl » B e
= = = E DA
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Ridge Regression
¢ If rank(X) < p (for example, if n < p), Wis cannot be computed,

(XTX) e RP*P; rank(X)<p = (XTX)"!does not exist
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Ridge Regression
¢ If rank(X) < p (for example, if n < p), Wis cannot be computed,
(XTX) e RP*P; rank(X)<p = (XTX)"!does not exist
® The classical alternative is ridge regression:

uAJridge = arg II'L'I,II ”y - Xw”% + A Hw”g

—1
- (XTX + )\I) XTy
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Ridge Regression
¢ If rank(X) < p (for example, if n < p), Wis cannot be computed,
(XTX) e RP*P; rank(X)<p = (XTX)"!does not exist
® The classical alternative is ridge regression:
Wridge = argmin [|y — Xw|3 + X [|w]3

—1
- (XTX + )\I) XTy

e XTX is positive semi-definite: (XTX + AI) is invertible, for A > 0
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Ridge Regression

If rank(X) < p (for example, if n < p), wis cannot be computed,

(XTX) e RP*P; rank(X)<p = (XTX)"!does not exist

The classical alternative is ridge regression:

wridge = arg Hgn ”y - Xw”% + A Hw”g
-1
- (XTX + )\I) XTy

e XTX is positive semi-definite: (XTX + AI) is invertible, for A > 0

Can be seen as Bayesian estimate with Gaussian prior

Fw (w) = :N(w;o, %I)
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Ridge Regression

If rank(X) < p (for example, if n < p), wis cannot be computed,

(XTX) e RP*P; rank(X)<p = (XTX)"!does not exist

The classical alternative is ridge regression:
. . : 2 2
Wridge = arg IILI)II ”y - Xw||2 +A Hw”Q

—1
- (XTX n )\I) xTy

XTX is positive semi-definite: (XTX + AI) is invertible, for A > 0

Can be seen as Bayesian estimate with Gaussian prior
1
fw(w) = N('w;O, XI>

® Known by other names, in other contexts: weight decay, penalized
least squares, Tikhonov regularization, 5 regularization,...
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Ridge Regression: lllustration

Even if w g can be computed, wWyiqge may preferable (lower MSE)
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Ridge Regression: lllustration

Even if w g can be computed, wWyiqge may preferable (lower MSE)

Example: fitting an order-14 polynomial to 21 points in R

1 it 20,135

maan squared armor

« 2} - train mse
== tost mse

log lambda
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Bias-Variance Decomposition
® |llustration with p = 1.

= = = E DA
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Bias-Variance Decomposition
® |llustration with p = 1.
® The bias-variance decomposition (var[U] = E[U?] — E[U]?)
2

MSE =E[(@(Y) —w)?] = var[(Y)] + E[d(Y) — w]

-~

variance squared bias
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Bias-Variance Decomposition
® |llustration with p = 1.
® The bias-variance decomposition (var[U] = E[U?] — E[U]?)
2

MSE =E[(@(Y) —w)?] = var[(Y)] + E[d(Y) — w]

-~

variance squared bias

MSE of LS

Variance

1.0 15 20
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Bias-Variance Decomposition
® |llustration with p = 1.

® The bias-variance decomposition (var[U] = E[U?] — E[U]?)

MSE =E[(@(Y) — w)?] = var[d(Y)] +E[d(Y) — w]
vargnce squared bias
A 7S ST T T

Variance

1

20

® Bias-variance trade-off. How to choose \?
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Bias-Variance Decomposition: Model Complexity

® Bias-variance trade-off also w.r.t. complexity

w—true function f(x) 250 4 wtrue function f(x)

0 ® trainsetl L] ua!n set1

A - A trainset2 A lu,n set2

2001 *\ 4 ® trainset3 200 4 m trainset3

150 150 4
High variance
100 100
50 50
o 0
-15 -10 -5 o 5 10
x
linear regression (order-1 polynomial) Piecewise linear interpolation

Pictures by Sebastian Raschka, 2023.

N
0
?
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Choosing ) via Cross Validation (CV)
e Available data (z1,91), ..., (Tn,Yn)

= = = E DA
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Choosing ) via Cross Validation (CV)

e Available data (z1,91), ..., (Tn,Yn)
® Split into K disjoint subsets (folds), each with & samples: Sy, ..., Sk
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Choosing ) via Cross Validation (CV)

e Available data (z1,91), ..., (Tn,Yn)
® Split into K disjoint subsets (folds), each with & samples: Sy, ..., Sk

® For each k € {1,..., K}, learn wf{;’gm from all the samples not in Sj.
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Choosing ) via Cross Validation (CV)

Available data (z1,91), ..., (Tn, Yn)

Split into K disjoint subsets (folds), each with % samples: Sy, ..., Sk

For each k € {1, ..., K}, learn wf{;’gm from all the samples not in Sj,.
Estimate the MSE using S

— K .
MSE}C(A) = E Z (yi - m?wfi]f:l)ge,)\)Q
1€SE
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Choosing ) via Cross Validation (CV)

Available data (z1,91), ..., (Tn, Yn)

Split into K disjoint subsets (folds), each with % samples: Sy, ..., Sk

For each k € {1, ..., K}, learn wfﬁ)geA from all the samples not in Sj,.
Estimate the MSE using S,

— K .
MSEL(N) = — D (s — 2] gy )’
1€Sk

Choose A by minimizing the average MSE estimate:

K
A = arg m/\lnz MSE(A) = arg mlnz Z —a wrldge /\)2

k=1 k=11ieSy
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Choosing ) via Cross Validation (CV)

Available data (z1,91), ..., (Tn, Yn)

Split into K disjoint subsets (folds), each with % samples: Sy, ..., Sk

For each k € {1, ..., K}, learn wfﬁ)geA from all the samples not in Sj,.
Estimate the MSE using S,

—_— K N
MSEL(N) = — D (i — @ tbyigye )’
1€SE

Choose A by minimizing the average MSE estimate:

K
A" = arg m/\lnz MSEx(A) = arg mlnz Z —a wrldge /\)2

k=1 k=1i€Sy

K-fold CV; common choices are X =5 and K = 10.
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Choosing ) via Cross Validation (CV)

Available data (z1,91), ..., (Tn, Yn)

Split into K disjoint subsets (folds), each with % samples: Sy, ..., Sk

For each k € {1, ..., K}, learn wfﬁ)geA from all the samples not in Sj,.
Estimate the MSE using S,

—_— K N
MSEL(N) = — D (i — @ tbyigye )’
1€SE

Choose A by minimizing the average MSE estimate:

K
A" = arg m/\lnz MSEx(A) = arg mmz Z —a wrldge /\)2

k=1 k=1i€Sy

K-fold CV; common choices are K =5 and K = 10.
® Extreme case: K = n, leave-one-out CV (LOOCV).

M. Figueiredo (IST) Linear Models LxMLS 2025  41/118
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Dual Variables: Ridge Regression

® Ridge regression: Wyidge(y) is the solution w.r.t. w of

N 1 N
(XTX + M )w=X"y & tbiage(y) = 1 X" (y — Xrigge(y))
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Dual Variables: Ridge Regression

® Ridge regression: Wyidge(y) is the solution w.r.t. w of
. 1 .
(XTX + /\I)w = XTy ~ wridge(y) = XXT (y - pridge(y))
that is,

(y - Xﬁ’ridge (y))

> =

wridge(y) = XTO! with a =
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Dual Variables: Ridge Regression

® Ridge regression: Wyidge(y) is the solution w.r.t. w of
. 1 .
(XTX + /\I)w = XTy ~ wridge(y) = XXT (y - pridge(y))
that is,

(y — X Wyidge (y))

> =

wridge(y) = XTa with a =

n
® Wiidge(Y) = E a;x;, a linear combination of rows of X
i=1
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Dual Variables: Ridge Regression

® Ridge regression: Wyidge(y) is the solution w.r.t. w of

. 1 N
(XTX+ M N)w=X"Ty & tridge(y)= XXT (¥ — Xthrigge(y))

that is,
N T . 1 R
'wridge(y) =X'a with a= X(y - X'wridge(y))
n
® Wiidge(Y) = Zaiazi, a linear combination of rows of X
i=1
® Predicted value for some new point x:
Q(w) =z’ wndge Zaz x’ mz

. linear combination of the inner products of x with the x;
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Dual Variables: Ridge Regression (2)

® Ridge regression in dual variables:

(y - pridge(y))

>| =

Wridge(Y) = XTa  with a=
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Dual Variables: Ridge Regression (2)

® Ridge regression in dual variables:
. T . 1 .
wridge(y) =X« with o = X(y - pridge('y))
® Inserting the first equality in the second one, solving for a

o=

(y - XXTa) & a= ()\I—i-XXT)_ly

>
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Dual Variables: Ridge Regression (2)
® Ridge regression in dual variables:
. T . 1 .
'wridge(y) =X"a with a= X(y - pridge(y))
® Inserting the first equality in the second one, solving for a

o=

(y - XXTa) & a= ()\I—i-XXT)_ly

>

thus

~ —1
wridge(y) =Xx7 ()‘I + XXT) Y

N~

nxn inversion
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Dual Variables: Ridge Regression (2)
® Ridge regression in dual variables:
. T . 1 .
'wridge(y) =X"a with a= X(y - pridge(y))
® Inserting the first equality in the second one, solving for a

o=

(y - XXTa) & a= ()\I—i-XXT)_Iy

>

thus

Widge(y) = X7 (M + XXT) 'y = (XX 4+ M) ' XTy

N~

nxn inversion pxp inversion
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Dual Variables: Ridge Regression (2)
® Ridge regression in dual variables:
. T . 1 .
'wridge(y) =X"a with a= X(y - pridge(y))
® Inserting the first equality in the second one, solving for a

o=

(y - XXTa) & a= ()\I—i-XXT)_Iy

>

thus

Widge(y) = X7 (M + XXT) 'y = (XX 4+ M) ' XTy

N~

nxn inversion pxp inversion
® X X7 is called the Gram matrix (i.e., (XX7T);; = zl'z;)
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Kernel Regression

® Recall that, in dual variables,
J(x) = Zai (Tx;), with a= (AT + XXT)_ly
i=1

e .. XX7 is the Gram matrix, i.e., (XX7);; =zl z;
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Kernel Regression

® Recall that, in dual variables,
J(x) = Zai (Tx;), with a= (AT + XXT)_ly
i=1

e .. XX7 is the Gram matrix, i.e., (XX7);; =zl z;

* Data points are only involved via inner products: ! z; and z’ z;
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Kernel Regression

Recall that, in dual variables,
= Zai (Tx;), with a= (M + XXT)_ly

e .. XX7 is the Gram matrix, i.e., (XX7);; =zl z;

® Data points are only involved via inner products: a:;fpmj and a:ij

To go non-linear, use a feature map ¢ : RP — R,

Z a; (p(@), d(xi)), with a=N+G) 'y,
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Kernel Regression

Recall that, in dual variables,
= Zai (Tx;), with a= (M + XXT)_ly

e .. XX7 is the Gram matrix, i.e., (XX7);; =zl z;

® Data points are only involved via inner products: a:;fpmj and a:ij

To go non-linear, use a feature map ¢ : RP — R,

ZO‘Z o(x;)), with o= (A+ G)_ly,

G is still the Gram matrix, that is, Gi; = (¢(x;), o(x;))
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Kernel Regression

Recall that, in dual variables,
= Zai (Tx;), with a= (M + XXT)_ly

e .. XX7 is the Gram matrix, i.e., (XX7);; =zl z;

® Data points are only involved via inner products: a:;fpmj and a:ij

To go non-linear, use a feature map ¢ : RP — R,

Z a; (p(@), d(xi)), with a=N+G) 'y,

G is still the Gram matrix, that is, Gi; = (¢(x;), o(x;))
e Feature map moves inner products from RP to R%. Is that bad?
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Kernel Regression (2)

® Motivation example: order 2 polynomial regression in R?:

o(x) = ¢([1, 2]") = [L, 217, 22°, V21 2]
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Kernel Regression (2)

® Motivation example: order 2 polynomial regression in R?:
¢(@) = ¢([w1, w2]") = [1, 1%, m5%, V221 ]
e Computing the inner product in R4

(B(x), p(a')) =1+ 212 2}” + 2> 2y + 221 2 moathy = 1 + (w0, 2')?
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Kernel Regression (2)

® Motivation example: order 2 polynomial regression in R?:
¢(@) = ¢([w1, w2]") = [1, 1%, m5%, V221 ]
e Computing the inner product in R*
(@), () = 1+ 2172} + 2”2’ + 221 2wy hy = 1 + (w, 2')?

e This inner product in R* is a function of that in R2.
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Kernel Regression (2)

Motivation example: order 2 polynomial regression in R?:

o(x) = ¢([1, 2]") = [L, 217, 22°, V21 2]

Computing the inner product in R*

(B(x), p(a')) =1+ 212 2}” + 2> 2y + 221 2 moathy = 1 + (w0, 2')?

This inner product in R?* is a function of that in R?.

This is called a kernel: K(x,2') = (¢(x), p(z))
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Kernel Regression (2)

Motivation example: order 2 polynomial regression in R?:

o(x) = ¢([1, 2]") = [L, 217, 22°, V21 2]

Computing the inner product in R*

(B(x), p(a')) =1+ 212 2}” + 2> 2y + 221 2 moathy = 1 + (w0, 2')?

This inner product in R?* is a function of that in R?.

This is called a kernel: K(x,2') = (¢(x), p(z))

Kernel least squares regression:

Z o K(z,x;), with o=+ G)_ly,
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Kernel Regression (2)

Motivation example: order 2 polynomial regression in R?:

o(x) = ¢([1, 2]") = [L, 217, 22°, V21 2]

Computing the inner product in R*

(B(x), p(a')) =1+ 212 2}” + 2> 2y + 221 2 moathy = 1 + (w0, 2')?

This inner product in R?* is a function of that in R?.

This is called a kernel: K(x,2') = (¢(x), p(z))

Kernel least squares regression:

Z o K(z,x;), with o=+ G)_ly,

® G is the Gram matrix, that is, G;; = K(x;, ;).
LxMLS 2025 46118



Kernel Regression (3)

® No need for structure: & € X, an arbitrary set.

= = = E DA
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Kernel Regression (3)

® No need for structure: & € X, an arbitrary set.

® Definition: a kernel is a function K : X x X — R, such that,

K(z,2') = (¢(x), ¢(x')),

for some ¢ : X — F, where F is a Hilbert space.
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Kernel Regression (3)

® No need for structure: & € X, an arbitrary set.

® Definition: a kernel is a function K : X x X — R, such that,

K(z,z') = (¢(z), o(z")),
for some ¢ : X — F, where F is a Hilbert space.

® Hilbert space? Just a complete inner-product vector space.
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Kernel Regression (3)

No need for structure: & € X, an arbitrary set.

Definition: a kernel is a function K : X x X — R, such that,
K(z,2') = (p(z), p(z')),

for some ¢ : X — F, where F is a Hilbert space.

Hilbert space? Just a complete inner-product vector space.

Mercer’s theorem: a symmetric function K : X x X — R is a kernel if
and only any Gram matrix G is positive semi-definite (psd).
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Kernel Regression (3)

No need for structure: & € X, an arbitrary set.

Definition: a kernel is a function K : X x X — R, such that,

K(z,2') = (¢(x), ¢(x')),

for some ¢ : X — F, where F is a Hilbert space.

Hilbert space? Just a complete inner-product vector space.

Mercer’s theorem: a symmetric function K : X x X — R is a kernel if
and only any Gram matrix G is positive semi-definite (psd).

® G is psd = ()\I-I— G’)_1 exists, for A > 0.

M. Figueiredo (IST) Linear Models LxMLS 2025 47 /118



Kernels: Examples
e In this slide, X = R¢

= = = E DA
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Kernels: Examples

e In this slide, X = R¢

e Linear kernel: K(z,z') = ((Az), (Az')); mapping ¢(z) = Ax.
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Kernels: Examples

e In this slide, X = R¢
e Linear kernel: K(z,z') = ((Az), (Ax’)); mapping ¢(xz) = Ax.
* Quadratic kernel: K(z,z') = ((z,x') + A)?;
o(x) = [A, V2Az1, V2Azs, ... \/ﬂxd,:c%, L1 X,y ey T Ty ooy T3]

(all monomials of degree up to 2, with scaling depending on A)
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Kernels: Examples

In this slide, X = R?

Linear kernel: K(x,z') = ((Ax), (Az’)); mapping ¢(x) = Ax.

Quadratic kernel: K(z,z') = ((z,x') + A)?;
o(x) = [A, V2Ax,, V2Axy, ...V 2Axy, 22, 21 T, ..., 1 T4, ..., T3]

(all monomials of degree up to 2, with scaling depending on A)

Polynomial kernel: K (z, ') = ((x, ') + A);

¢(x) = [all monomials of degree up to p, with scaling depending on A]

dim ¢(z) = (d +p>

p

M. Figueiredo (IST) Linear Models LxMLS 2025  48/118



Kernels: Examples
® In this slide, X = R¢

= = = E DA
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Kernels: Examples
® In this slide, X = R¢

o & = = o
M. Figueiredo (IST) Linear Models
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Kernels: Examples

e In this slide, X = R¢
e Gaussian kernel: K(z,2') = exp(—%);
transformation ¢ : R? — F, where F has infinite dimension.

o(x) = exp<——”w2_02. “%)

® ||lustration for d = 1:
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Kernels: Examples
In this slide, X = R¢

i : / lz—2]3 .
Gaussian kernel: K(x,z') = eXp(_T2 ,

transformation ¢ : R? — F, where F has infinite dimension.

p(@) = exp(~ 12— 12)

202

Illustration for d = 1:

/¢\4 $(x) ¢(x)

°
=
>

<
EN)

oot = (-1 1 (L2
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

® Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).

Kn(A,A)=|ANA|, for A, A €X
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

® Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).

Kn(A, A =|ANn A'|, forA, A" € X (intersection kernel)
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

® Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).
Kn(A, A =|ANn A'|, forA, A" € X (intersection kernel)

mapping ¢ : X — F (space of real-valued functions in 8)
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

® Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).
Kn(A, A =|ANn A'|, forA, A" € X (intersection kernel)

mapping ¢ : X — F (space of real-valued functions in 8)

. 1 « z€A
¢(A) =14, thatis 1A(x)—{ 0 « z¢4
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

e Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).
Kn(A, A =|ANn A'|, forA, A" € X (intersection kernel)

mapping ¢ : X — F (space of real-valued functions in 8)

. 1 « z€A
¢(A) =14, thatis 1A(x)—{ 0 « z¢A
(p(A) =) La@la(@)= Y 1=]AnA|=Kn(A,A)
zeX r€EANA’
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

e Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).
Kn(A, A" =|ANA'|, forA, A" € X (intersection kernel)
mapping ¢ : X — F (space of real-valued functions in 8)

. 1 « z€A
¢(A) =14, thatis 1A(x)—{ 0 « z¢A

(p(A) =Y 1@ ia(@) = Y 1=AnA| = Kn(4,4))

xeX zeANA’

® There are many other kernels for sets.

M. Figueiredo (IST) Linear Models LxMLS 2025  50/118



Kernels in 20257 Let's Ask Gemini 2.5 Pro

In the day and age of deep learning, for someone
learning the foundations of machine learning, is it still

worth to study kernels?

Show thinking v

Absolutely. While deep learning gets the attention, studying kernels is a critical step f

serious ML student for three key reasons:
It Builds Your Foundation: Kernels are the clearest way to learn the “trick” of making linear
models work on complex, non-linear data. This concept of transforming data to find patterns
s a cornerstone of modern Al
It's a Practical Tool: For smaller datasets, kernel methods like Support Vector Machines
(SVMs) are often faster, require less data, and can outperform massive deep learning
models.
It Unlocks Deep Learning Theory: Kernels provide a vital bridge to understanding neurs
networks. Modern research S at infinitely wide neural networks behave exactly

ike kernel machines, making kerne ential for grasping the theory behind the magic
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Minimum-Norm Linear Regression

¢ Consider n < p, with X full rank (rank(X) = n)

o & = = o
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Minimum-Norm Linear Regression

¢ Consider n < p, with X full rank (rank(X) = n)

® | S regression does not have a unique solution:

wis(y) € arg min [y — Xw|3
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Minimum-Norm Linear Regression

¢ Consider n < p, with X full rank (rank(X) = n)

® | S regression does not have a unique solution:
. . 2
w € arg min —Xw
Ls(y) € arg min [ly 2

® X w = y has infinitely many solutions.
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Minimum-Norm Linear Regression

Consider n < p, with X full rank (rank(X) = n)

LS regression does not have a unique solution:

wis(y) € arg min [y — Xw|3

Xw = y has infinitely many solutions.

Minimum-norm (MN) linear regression:

wun(y) =arg min ol = XXXy
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Minimum-Norm Linear Regression

Consider n < p, with X full rank (rank(X) = n)

LS regression does not have a unique solution:

wis(y) € arg min [y — Xw|3

Xw = y has infinitely many solutions.

Minimum-norm (MN) linear regression:

wun(y) =arg min ol = XXXy

LS and MN: instances of the Moore-Penrose pseudo-inverse.
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Minimum-Norm Linear Regression

Consider n < p, with X full rank (rank(X) = n)

LS regression does not have a unique solution:

wis(y) € arg min [y — Xw|3

Xw = y has infinitely many solutions.

Minimum-norm (MN) linear regression:

wun(y) =arg min ol = XXXy

LS and MN: instances of the Moore-Penrose pseudo-inverse.

Perfect interpolation regime: § = Xwun(y) =y
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Double Descent

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®', Daniel Hsu®, Siyuan Ma®, and Soumik Mandal®

*Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210; "Department of Statistics, The Ohio State University,
Columbus, OH 43210; and “‘Computer Science Department and Data Science Institute, Columbia University, New York, NY 1002
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Double Descent (2)
® Random Fourier features: ¢;(x) = exp(v/—1(v;, x)),

Zero-one loss

v~ N(O, I)

Squared loss

88 = 1709
~4~ RFF ~4~ RFF
Min. norm solution y, . Min, mnorm solution Ay, .
" (original kemel) = (original kermel)
100
g .
2 15 g 10
&
1
4 -
0
2 T T T T T T T
60 o 10 20 30 40 50 60
447 447 k
§ 62 - g 62
z ~4= RFF z —4— RFF
= Min. norm solution h,, .. = Min. norm solution h,, .
i T T T T T T T T T T T T
[ 10 20 30 40 50 60 0 10 20 30 40 50 60
14 = 04
_ —— RFF —— RFF
& €
c 849 ® 02
E -
0+ 0.0
T T T T T T T T T T T T T
[} 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Random Fourier Features (x107) (N) Number of Random Fourier Features (x10%) (N)
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Overparametrization and Double Descent

® “Modern” interpolating regime: more parameters than data points.

M. Figueiredo (IST) Linear Models LxMLS 2025 55/118



Overparametrization and Double Descent

® “Modern” interpolating regime: more parameters than data points.

® For linear regression with p > n, use minimum norm solution.
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Overparametrization and Double Descent

® “Modern” interpolating regime: more parameters than data points.
® For linear regression with p > n, use minimum norm solution.

® Example w/ ¢;(z) = max{v]x,0}, where v; are random vectors.
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Overparametrization and Double Descent

® “Modern” interpolating regime: more parameters than data points.
® For linear regression with p > n, use minimum norm solution.

® Example w/ ¢;(z) = max{v]x,0}, where v; are random vectors.

“Classical” regime

(Bias/variance tradeoff) “Modern” interpolating regime
1.5 T
® mean squared error i
. 2 I
= min ||y — Xw||3 I
w [
1.0 S
Seeea, Joi
5 Pt 4
= T Ly [ Interpolation =n
“oosk ~ { % Theshold P
.~ ' .
"-- i ) e
H
‘I."‘ : ‘1‘-“““““““0‘..
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0.0t . PRt oY | " TSR RTIT o

Number of parameters P

(Image adapted from Rocks and Mehta, 2022.)
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Overparametrization and Double Descent

® “Modern” interpolating regime: more parameters than data points.
® For linear regression with p > n, use minimum norm solution.

® Example w/ ¢;(z) = max{v]x,0}, where v; are random vectors.

“Classical” regime . -
(Bias/variance tradeoff) Modern" interpolating regime

® mean squared error

= min ||y — Xw]|3
w

1L0F

T
I
i
i
i
i
i
i
i
[

o ee 1 )
.~ [

I B T N SR v

- *eeseer” [ nterpolation =N

w \

0.5k . H . Threshold p
— ! .
‘-‘- H ., “
- ..
L. H e esrtinttttncanesd
-
0.0t L PP T | " USRI |

Number of parameters P

(Image adapted from Rocks and Mehta, 2022.)

® Current research topic.
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Overparametrization and Double Descent (cont.)
regression: the ¢; are Legendre polynomials.

® Polynomial

10°

107

10°

10°

Mean Squared Error

10t

107!

1073

Polynomial Regression

ylx) = 2z + cos(25x) |

underparametrized

Test
Train
e |nterpolation Threshold

10° 10!

Num Parameters (Num Features)

M. Figueiredo (IST) Linear Models

10?2
(Schaeffer et al, 2023)
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Overparametrization and Double Descent (cont.)

® Polynomial regression: the ¢; are Legendre polynomials.

underparametrized

overparametrized

il

M. Figueiredo (IST)

Linear Models




Bayesian View of Ridge Regression

® Linear-Gaussian likelihood (design D): fyw (y|w) = N(y|Dw,o*I)
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Bayesian View of Ridge Regression
® Linear-Gaussian likelihood (design D): fyw (y|w) = N(y|Dw,o*I)
* Gaussian prior: fy (w) = N(w;0,I/\)
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Bayesian View of Ridge Regression
® Linear-Gaussian likelihood (design D): fyw (y|w) = N(y|Dw,o*I)
* Gaussian prior: fy (w) = N(w;0,I/\)
® Posterior density:
Wridge

Fwiy (w]y) = N(w; (DD + 0?\I) ' D"y, 02(D"D + UQAI)_1>
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Bayesian View of Ridge Regression

Linear-Gaussian likelihood (design D): fyw (y|w) = N(y|Dw,o*I)
Gaussian prior: fyy (w) = N(w;0,1/X)

Posterior density:
wridge

Fwiy (w]y) = N(fw; (DD + 0?\I) ' D"y, 02(D"D + UQAI)_1>

Prediction at new point x, is Y (x.) = xI W + N (Gaussian)
Frix (yla.) = N(mI(DTD +02M) "' DTy, o%x” (D'D + 0°\) 'z, + 02)

:/fy|x,y(y|w*,w,y) fwiy (wly) dw
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Bayesian View of Ridge Regression

Linear-Gaussian likelihood (design D): fyw (y|w) = N(y|Dw,o*I)
Gaussian prior: fyy (w) = N(w;0,1/X)

Posterior density:
wridge

Fwiy (wly) = N(w; (D™D + o®AI)"' D"y, o*(D" D + 0'2)\I)_1>

Prediction at new point x, is Y (x,) = I W + N (Gaussian)
fyix (ylx.) = N(wI(DTD +0?MI)"' D"y, 0%z (D'D + UQAI)_la:* + 02)
:/fY|X,Y(y|5B*,w;y) fW\Y(w|y> dw

...the variance/uncertainty of the prediction depends on x.
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Bayesian View of Ridge Regression

Linear-Gaussian likelihood (design D): fyw (y|w) = N(y|Dw,o*I)
Gaussian prior: fyy (w) = N(w;0,1/X)

Posterior density:
1‘A’ridge

Fwiy (wly) = N(w; (D™D + o®AI)"' D"y, o*(D" D + 0'2)\I)_1>

Prediction at new point x, is Y (x,) = I W + N (Gaussian)
fyix (ylx.) = N(:c:f(DTD +0?MI)"' D"y, 0%z (D'D + UQAI)_la:* + 02)
:/fY|X,Y(y|5B*,w;y) fW\Y(w|y> dw

...the variance/uncertainty of the prediction depends on x.

® Example in next slide: p =1, w = [wo, w1]T, Werue = [~0.3, 0.5]

M. Figueiredo (IST) Linear Models LxMLS 2025  58/118



Bayesian View of Ridge Regression: Example 1

likelihood prior/posterior data space
1 1

o
I
x o

zo
1
x o

L4 n=2

1
wi o n=20
-1
-1 0 1 -1 0
wo wo X

I
o
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Bayesian View of Ridge Regression: Example 2

plugin approximation (MLE) Posterior predictive
@,

i T

— prodiction
_Q training data|
0

° 3 8 -3 -3 8 8 2 -

functions sampled from postenor

w0}
o
!
20}
| . . " R s R .
% = = 3 o 2 : O ® _ _
] = = = QR
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Epistemic and Aleatoric Uncertainty

® Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
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Epistemic and Aleatoric Uncertainty

® Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
e Apply with U =Y (2) and V = w:

var[Y(z')] = Ew [var[Y (2)[W]] + varw [E[Y (2/)|w]]

aleatoric uncertainty  epistemic uncertainty
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Epistemic and Aleatoric Uncertainty

® Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
e Apply with U =Y (2) and V = w:

var[Y(z')] = Ew [var[Y (2)[W]] + varw [E[Y (2/)|w]]

aleatoric uncertainty  epistemic uncertainty

® Aleatoric uncertainty: expectation of the variability for each w;
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Epistemic and Aleatoric Uncertainty

® Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
Apply with U =Y (2’) and V = w:

var[Y(z')] = Ew [var[Y (2)[W]] + varw [E[Y (2/)|w]]

aleatoric uncertainty  epistemic uncertainty

Aleatoric uncertainty: expectation of the variability for each w;

Epistemic uncertainty results from the variability in estimating w.
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Epistemic and Aleatoric Uncertainty

® Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
Apply with U =Y (2’) and V = w:

var[Y(z')] = Ew [var[Y (2)[W]] + varw [E[Y (2/)|w]]

aleatoric uncertainty  epistemic uncertainty

Aleatoric uncertainty: expectation of the variability for each w;

Epistemic uncertainty results from the variability in estimating w.

For Y(x') = 2TW + N, with W ~ N(u, C) and N ~ N(0,0?),

frix(yle') = N(y; pla o' Ca’ + 02)
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Epistemic and Aleatoric Uncertainty

Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
Apply with U =Y (2') and V = w:

var[Y(z')] = Ew [var[Y (2)[W]] + varw [E[Y (2/)|w]]

aleatoric uncertainty  epistemic uncertainty

Aleatoric uncertainty: expectation of the variability for each w;

Epistemic uncertainty results from the variability in estimating w.

For Y(x') = 2TW + N, with W ~ N(u, C) and N ~ N(0,0?),

frix(yle') = N(y; pla 2'"Cx’ + 02)

Aleatoric: Eyy [var[Y (2')|W]] = Ew [0?] = o2
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Epistemic and Aleatoric Uncertainty

® Law of total variance: var[U] = Ey [vary [U|V]] + vary [E[U|V]]
Apply with U =Y (2’) and V = w:

var[Y(z')] = Ew [var[Y (2)[W]] + varw [E[Y (2/)|w]]

aleatoric uncertainty  epistemic uncertainty

Aleatoric uncertainty: expectation of the variability for each w;

Epistemic uncertainty results from the variability in estimating w.

For Y(x') = 2TW + N, with W ~ N(u, C) and N ~ N(0,0?),

frix(yla’) = N(y; pla 2" Cal + 02)
e Aleatoric: Eyy [var[Y(m')]W]] =Ew [02] = o2,
* Epistemic: vary [E[Y (2/)|w]] = varw [T W] = 2’/ Ca/
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LASSO regression

® Alternative to ridge regression, with built-in variable selection
. 1 2
Wiasso = al"quljl]n §||y - Xw||2 +A ”le

where [|[w|jy = >, |w;|, the 1 norm.

® | ASSO = least absolute shrinkage and selection operator
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LASSO regression

® Alternative to ridge regression, with built-in variable selection
. 1 2
Wiasso = argn}}’n §||y - Xw||2 + A Hle

where [|[w|jy = >, |w;|, the 1 norm.
® | ASSO = least absolute shrinkage and selection operator

® Can be seen as MAP estimate of w, under Laplacian prior
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LASSO versus Ridge

® Example (prostate cancer data)

LASSO
e
i -
Eh S
g0
o
3
p
';0 D.? 0s 08 0 " o 2
(A=) Snnmbage Factor s (A=0) (A=)
soc1/||wlly
o
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Solving LASSO Regression

® Ridge regression: simply a linear system:
(XTX + M) tbrigge = Xy

...may capitalize on many decades of work on numerical linear algebra.
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Solving LASSO Regression

® Ridge regression: simply a linear system:
(XTX + M) tbrigge = Xy
...may capitalize on many decades of work on numerical linear algebra.

® | ASSO is much more challenging:
. .1 2
Wiasso = argn}il’n §Hy - Xw“2 + A kul

since ||w||; is non-differentiable (for any w; = 0)
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Solving LASSO Regression

® Ridge regression: simply a linear system:
(XTX 4+ M) Wrigge = X'y
...may capitalize on many decades of work on numerical linear algebra.
® | ASSO is much more challenging:
. .1 2
Wiasso = argmin g [ly — Xwl[f3 +Afwl

since ||w||; is non-differentiable (for any w; = 0)

® Using gradient descent (e.g., in deep learning), simply pretend that ¢;
is differentiable (derivative in {—1,0,1}), carefully adapt the step size.
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Outline

© Classification

= = = E DA
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Classification (a.k.a. Pattern Recogpnition)

® In a nutshell: produce a “machine” that predicts/estimates/guesses a
class y € {1, ..., K}, from variables/features x1,...,z,

T
)

X = : ? Y
Tp

M. Figueiredo (IST) Linear Models LxMLS 2025 66 /118



Classification (a.k.a. Pattern Recogpnition)

® In a nutshell: produce a “machine” that predicts/estimates/guesses a
class y € {1, ..., K}, from variables/features x1,...,z,

T
xr
x="": B j

Tp

® Maybe the core machine learning problem, with countless applications.
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Classification (a.k.a. Pattern Recogpnition)

® In a nutshell: produce a “machine” that predicts/estimates/guesses a
class y € {1, ..., K}, from variables/features x1,...,z,

T
xr2

X = : ? Y
Tp

® Maybe the core machine learning problem, with countless applications.

® Learning/training: given a collection of examples (training data)

D = ((x1,41), -, (Xn, Un))

.find the “best” possible machine.
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Generalized Linear Models

e Conditional probability of class y for sample «:

exp ((n) (@)
Yurexp (n)T ()

fY|X(y|93) =
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Generalized Linear Models

e Conditional probability of class y for sample «:

exp () p(@))
a1 exp ()T b))
* Training data D = ((x1, 1), ---, (Xn, Yn))

fY|X(y|93) =

v Each y; is a sample of Y; ~ fyx (y|x:)

v" The samples are conditionally independent
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Generalized Linear Models

e Conditional probability of class y for sample «:

exp () p(@))
S exp (n)7 ()
* Training data D = ((x1, 1), ---, (Xn, Yn))

fY|X(y|93) =

v Each y; is a sample of Y; ~ fyx (y|x:)
v" The samples are conditionally independent
® Parameters ) = (n(l), ...,n(K)) , log-likelihood function:

n
108 f¥i Vo (U1, s Yn; 1y ooy Ty ) = 3108 fyvx (wili, M)
i=1
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Generalized Linear Models

e Conditional probability of class y for sample «:

exp () p(@))
> exp ()T ()
* Training data D = ((x1, 1), ---, (Xn, Yn))

fY|X(y|33) =

v Each y; is a sample of Y; ~ fyx (y|x:)
v" The samples are conditionally independent
® Parameters ) = (n(l), ...,n(K)) , log-likelihood function:

n
108 f¥i Vo (U1, s Yn; 1y ooy Ty ) = 3108 fyvx (wili, M)
i=1

K
Z 1=y, log fy|x (y|zi, )

modernly called cross-entropy loss.
LxMLS 2025 67 /118



The Binary Case: A Detailed Look

® Binary classification, y € {1, 0}, thus

exp (V) ()
exp () ¢(@)) +exp (1) ()

fyix(lz) =
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The Binary Case: A Detailed Look

® Binary classification, y € {1, 0}, thus

exp (V) ()
exp () ¢(@)) +exp (1) ()

fyix(lz) =

* Dividing numerator and denominator by exp ((n®)7¢(x)),

exp (w' ¢(x))
1+ exp (wl¢(z))

frix(1z) =

where w = (M — (),
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The Binary Case: A Detailed Look

® Binary classification, y € {1, 0}, thus

exp (V) ()
exp () ¢(@)) +exp (1) ()

fyix(lz) =

* Dividing numerator and denominator by exp ((n®)7¢(x)),

exp (w' ¢(x))
1+ exp (wl¢(z))

fyix(1lz) = = sigmoid(wT(b(:c))

where w = (M — (),
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Binary Logistic Regression

® Model: fyx(1|z) = sigmoid(qu.’)(az))

= = = E DA
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Binary Logistic Regression

® Model: fyx(1|z) = sigmoid(qu.’)(az))

1

0o sigmoid(u) = exp(u)

1 + exp(u)

08f

0.7

06

05F

04F

03

[} = - =
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Binary Logistic Regression

® Model: fyx(1|z) = sigmoid(qub(az))

1

explu)
1 + exp(u)

0o sigmoid(u) =
08
0.7
06
05}
04+

03

® Obviously fyx(0lz) =1~ fyx(1]|z).

oy <9 =» «= yao
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Binary Logistic Regression

® In two dimensions (w, ¢(x) € R?)

TP
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Binary Logistic Regression

® In two dimensions (w, ¢(x) € R?)

TP

* Classical decision boundary, fy|x(1|z) =1/2 < w’¢(z)
is linear with respect to ¢(x).

M. Figueiredo (IST) Linear Models
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Binary Logistic Regression: Log-Likelihood

) . - (wT¢(w)) Yy 1 (1—y)
fy(ylz) = <1+exp (wT¢($))> <1+exp (wTdJ(x)))
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Binary Logistic Regression: Log-Likelihood

) . - (wT¢(w)) Yy 1 (1—y)
fy(ylz) = <1+exp (wTd,(w))) <1+exp (wTdJ(x)))

o Negative log-likelihood (NLL), given D = ((Xl,yl),..., (Xn,yn)),

g exp (o) o 1
=3 s 5Tk exp (Wl pe) y’“guexp(w%(wi)))

1

é(log Lt exp (w 0()] -y Bz

=1
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Binary Logistic Regression: Log-Likelihood

) . - (wT¢(w)) Yy 1 (1—y)
fy(ylz) = <1+exp (wTd,(w))) <1+exp (wTdJ(x)))

o Negative log-likelihood (NLL), given D = ((Xl,yl),..., (Xn,yn)),

g exp (o) o 1
=3 s 5Tk exp (Wl pe) y’“guexp(w%(wi)))

=1

= i(log +exp (whop(z;))] - yin¢($z‘)>

® ML estimate wy, = argmin £(w)
w
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Binary Logistic Regression: Log-Likelihood

) . - (wT¢(w)) Yy 1 (1—y)
fy(ylz) = <1+exp (wTd,(w))) <1+exp (wTdJ(x)))

o Negative log-likelihood (NLL), given D = ((Xl,yl),..., (Xn,yn)),

)
Sl = ;@11 51+ exp (w” ¢ () Fmwloss +exp (wT¢(wi)))

n

- Z <1og[1 +exp (w! ¢(z;))] — yin¢(fvz‘)>

® ML estimate wy, = argmin £(w)
w

® No closed form! We need optimization algorithms (later)
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Binary Logistic Regression: Log-Likelihood

) . - (wT¢(w)) Yy 1 (1—y)
fy(ylz) = <1+exp (wTd,(w))) <1+exp (wTdJ(x)))

o Negative log-likelihood (NLL), given D = ((Xl,yl),..., (Xn,yn)),

T 3 A Tt AP )

2N BT oxp (T b)) 1+ exp (w” $(x:)

= Z(log +exp (w'¢(x;))] - yin¢(fUz‘)>
® ML estimate wy, = argmin £(w)

® No closed form! We need optimization algorithms (later)
® L(w) is smooth and convex (should not be too hard to optimize)
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Ridge and LASSO Logistic Regression

® Ridge logistic regression:
. : A e
Wridge = arg min £(w) + Zf|wlf3

still smooth and convex.
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Ridge and LASSO Logistic Regression

® Ridge logistic regression:
"—i’ridge = argminﬁ(w) + _HwH%
w 2
still smooth and convex.
® Sparse (LASSO) logistic regression:
wsparse = argngn'&(w) + )\”U’Hl

still convex, but not smooth.
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Multi-class Logistic Regression
® Recall the GLM,

X T o)
fyix (ylz, w) = ;P(¢(m) w®)

. with w = (w®, ..., w)).
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Multi-class Logistic Regression
® Recall the GLM,

X T o)
fyix (ylz, w) = ;P(¢(m) w®)

Z exp(¢(a:)Tw(“))

u=1

. with w = (w®, ..., w)).

® This is called the multinomial /multi-class logistic, a.k.a. maximum
entropy, softmax, ....
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Multi-class Logistic Regression
® Recall the GLM,

X T o)
fyix (ylz, w) = ;P((b(:c) w®)

Zexp(qﬁ(:c)Tw(“))

u=1

. with w = (w®, ..., w)).

® This is called the multinomial /multi-class logistic, a.k.a. maximum
entropy, softmax, ....

® The negative log-likelihood function (cross-entropy loss):

n n K
> log fyx (yilai, w) = > Y 1,1 log fyx (Klai,m),
=1

i=1 k=1
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Multi-class Logistic Regression (2)

e Using one-hot encoding: y; € {0, 1}, y;. = 1 if x; is in class k
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Multi-class Logistic Regression (2)

e Using one-hot encoding: y; € {0, 1}, y;. = 1 if x; is in class k

® The negative multinomial logistic log-likelihood function

n K

L(w) = yirlog fyx (klai, w)

i=1 k=1
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Multi-class Logistic Regression (2)

e Using one-hot encoding: y; € {0, 1}, y;. = 1 if x; is in class k

® The negative multinomial logistic log-likelihood function

n

K
L(w) = yirlog fyx (klai, w)
i=1 k=1
can be written as

s (ot (o)

=1

M. Figueiredo (IST) Linear Models LxMLS 2025 74 /118



Multi-class Logistic Regression (2)

e Using one-hot encoding: y; € {0, 1}, y;. = 1 if x; is in class k

® The negative multinomial logistic log-likelihood function

n

K
L(w) = yirlog fyx (klai, w)
i=1 k=1
can be written as

s (ot (o)

=1

® Notice: if x; is in class k, minimizing £(w) pushes :B;fp'w(k) up.
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Bayesian Logistic Regression

® Using some estimate w, obtained from data D, and plugging it into
fy|x (y|x,w) ignores the randomness/uncertainty in
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Bayesian Logistic Regression

® Using some estimate w, obtained from data D, and plugging it into
fy|x (y|x,w) ignores the randomness/uncertainty in

® Bayesian approach: from a prior fy (w), compute the posterior

e wly) = P D )

where fyw(ylw) = H@]\;1 fyix (yil®i, w) (recall x; are deterministic)
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Bayesian Logistic Regression

® Using some estimate w, obtained from data D, and plugging it into
fy|x (y|x,w) ignores the randomness/uncertainty in

® Bayesian approach: from a prior fy (w), compute the posterior

e wly) = P D )

where fyw(ylw) = Hf\il fyix (yil®i, w) (recall x; are deterministic)

® Given some new point x,, the predictive distribution is

hmw%w=/mmehwwmwa
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Bayesian Logistic Regression

Using some estimate w, obtained from data D, and plugging it into
fy|x (y|x,w) ignores the randomness/uncertainty in

Bayesian approach: from a prior fy (w), compute the posterior

e wly) = P D )

where fyw(ylw) = Hf\il fyix (yil®i, w) (recall x; are deterministic)

Given some new point x,, the predictive distribution is

hmw%w=/NWWMhumeMw

Unfortunately, none of these have closed-form expressions.
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Bayesian Logistic Regression (2)

Log UkeiPood

(c)

(d)
Figure 10.13: (a) Hlustration of the data. (b) Log-likelihood for a logistic regression model. The line is drawn
from the origin in the direction of the MLE (which is at infinity). The numbers corvespond to 4 points in
cter space, cor ding

to the lines in (a). (c¢) Unnormalized log posterior (assuming vague spherical
;uwr) (d) Laplace approximation to posterior. Adapted from a figure by Mark Girolami. Generated by code
at figures.probml.ai/book1/10.13.

o
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Bayesian Logistic Regression (3)

Ply=11x. wMAP)

6 el *
. ° I.y.
c ., .

e o &
.t -
0f J et et

.
-2 .
.
-
-6

(a)

(c) (d)

Figure 10.14: Posterior predictive distribution for a logistic regression model in 2d.  (a): contours of
ply = 1|&, Weap). (b): samples from the posterior predictive distribution. (c): Averaging over these samples.
(d): moderated output (probit approrimation). Adapted from a figure by Mark Girolami. Generated by code at

Sigures.probml.ai/book1/10.14.
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Another View of (and Beyond) Softmax
T

Linear or non-linear

D2 N
regression - 7 :

(e.g. deep network) . 2k * . Yk
Tp ZK Smmmmm— YK
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Another View of (and Beyond) Softmax
1

Linear or non-linear

Tp

regression

D2
(e.g. deep network)

: Y
) .
L2k

D YUk
ZK

e Scores: z € RE, without constraints/restrictions.

o & = = o
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Another View of (and Beyond) Softmax

T
 Z
T2 Linear or non-linear : 1 0
X = . regression ?
(e.g. deep network) _— * Yk
Tp ZK YK

e Scores: z € RE, without constraints/restrictions.

® Probabilities: y; = Plclass k|x], thus y € Ag_1, where

K
Ag_ 1= {y e RX, st.y1, ...,y > 0 and Zyl = 1} (simplex)
k=1
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Another View of (and Beyond) Softmax

T
 Z
T2 Linear or non-linear : 1 9
X = . regression ?
(e.g. deep network) _— * Yk
Tp ZK YK

e Scores: z € RE, without constraints/restrictions.

® Probabilities: y; = Plclass k|x], thus y € Ag_1, where

K
Ag_ 1= {y e RX, st.y1, ...,y > 0 and Zyl = 1} (simplex)
k=1

® How to map from z € R¥ to y € Ag_1, such that

Zi=zj = yi=y; and z; > zj = y; >y

M. Figueiredo (IST) Linear Models
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Argmax and Softmax
® First possibility: probability vector “most aligned” with z:

y=arg max plz = y£0ske argmax{z;j, j =1,..., K}
PEAK 1 J
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Argmax and Softmax
® First possibility: probability vector “most aligned” with z:

y=arg max plz = y£0ske argmax{z;j, j =1,..., K}
PEAK 1 J

called the argmax operator/mapping.
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Argmax and Softmax
® First possibility: probability vector “most aligned” with z:

y=arg max plz = y£0ske argmax{z;j, j =1,..., K}
PEAK 1 J

called the argmax operator/mapping.

® Second possibility: encourage more uniform probability distribution:

y =arg max p’z+H(p)
PEAK 1

where H(p) is Shannon's entropy,

K
H(p)=—) pilogp;
k=1
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Argmax and Softmax
® First possibility: probability vector “most aligned” with z:

y=arg max plz = y£0ske argmax{z;j, j =1,..., K}
PEAK 1 J

called the argmax operator/mapping.

® Second possibility: encourage more uniform probability distribution:

y =arg max p’z+H(p)
PEAK 1

where H(p) is Shannon's entropy,

K
H(p)=—) pilogp;
k=1

® H satisfies: H(p) > 0 and H(p) < log K (attained for p; = 1/K).
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Argmax and Softmax
® First possibility: probability vector “most aligned” with z:

y=arg max plz = y£0ske argmax{z;j, j =1,..., K}
PEAK 1 J

called the argmax operator/mapping.

® Second possibility: encourage more uniform probability distribution:

y=arg max p'z+H(p) = y=softmax(z), i.e. yp o exp(z)
PEAK 1

where H(p) is Shannon's entropy,

K
H(p)=—) pilogp;
k=1

® H satisfies: H(p) > 0 and H(p) < log K (attained for p; = 1/K).
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1
® Add Lagrangian for the simplex constraint:

y = argmax #pTz + H(p) +A(17p—1)
p
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1
® Add Lagrangian for the simplex constraint:
y=argmaxf3p’z + H(p) + \(1Tp—-1)
p

® Taking derivatives (gradient) w.r.t. pi,...,px and equating to zero:

Bzi—1—logp;+A=0
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1
® Add Lagrangian for the simplex constraint:
y=argmaxf3p’z + H(p) + \(1Tp—-1)
p

® Taking derivatives (gradient) w.r.t. pi,...,px and equating to zero:

Bzi—1—logp;+A=0 < pizexp[ﬁzi—i—)\—l]
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1
® Add Lagrangian for the simplex constraint:
Y= argmgx,BpTz + H(p) + x(1Tp-1)
® Taking derivatives (gradient) w.r.t. pi,...,px and equating to zero:

e/B Zi

Z(B;A)

Bzi—1—logp;+A=0 < pizexp[ﬁzi—i—)\—l] =
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1

Add Lagrangian for the simplex constraint:

y=argmaxf3p’z + H(p) + \(1Tp—-1)
p

Taking derivatives (gradient) w.r.t. pi,...,px and equating to zero:
e/Bzi

Z(B;A)

Bzi—1—logp;+A=0 < pizexp[ﬁzi—i—)\—l] =

Choosing A to satisfy the constraint 17p = 1 determines Z(3, \)
eﬂzi

E‘f(':l erBz]'

M. Figueiredo (IST) Linear Models LxMLS 2025 80/118
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Beyond Softmax: Sparsemax
® A third possibility!: simply project z onto Ax_;

y=arg min |p—z||3 = y = sparsemax(z)
PEAK 1

LA. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.

M. Figueiredo (IST) Linear Models LxMLS 2025 81/118



Beyond Softmax: Sparsemax
® A third possibility!: simply project z onto Ax_;

y=arg min |p—z||3 = y = sparsemax(z)
PEAK 1
® |t can also be written as

1

T 2
= arg max z

Yy g : p 2“1’”2

-1

LA. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.
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Beyond Softmax: Sparsemax
® A third possibility!: simply project z onto Ax_;

y=arg min |p—z||3 = y = sparsemax(z)
PEAK 1
® |t can also be written as

1

T 2
= arg max z

Yy g : p 2“1’”2

-1

® —|p|l3 is (up to a constant) a Tsallis entropy.

LA. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.
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Beyond Softmax: Sparsemax

A third possibility!: simply project z onto Ax_;

y=arg min |p—z||3 = y = sparsemax(z)
PEAK 1

It can also be written as

1
T 2
= ar max zZ— =

-1

—|Ipl3 is (up to a constant) a Tsallis entropy.

General family, where € is some entropy,

y=arg max SBp’z+Qp)
PEAK 1

LA. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.
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Argmax, Softmax, and Sparsemax
e All these mappings satisfy: 2/ =z +al = ¢y =y

o & = = o
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Argmax, Softmax, and Sparsemax
e All these mappings satisfy: 2/ =z +al = ¢y =y

® They are also permutation equivariant: if R is a permutation,

z'=R(z) = y' = R(y)

M. Figueiredo (IST) Linear Models LxMLS 2025 82/118



Argmax, Softmax, and Sparsemax
e All these mappings satisfy: 2’ =z+al = ¢y =y
® They are also permutation equivariant: if R is a permutation,
Z =R(z) = y =R(y)

® Sparsemax versus softmax:

=== softmax; ([t.0)
= paraamax, ([t.0)
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Argmax, Softmax, and Sparsemax

® Sparsemax is in-between softmax and argmax

® For z =[1.0716,—1.1221, —0.3288, 0.3368, 0.0425]

softmax(z) sparsemax(z)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0

M. Figueiredo (IST) Linear Models

argmax(z)

0.8
0.6
0.4

0.2
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Argmax, Softmax, and Sparsemax

® Sparsemax is in-between softmax and argmax

® For z =[1.0716,—1.1221, —0.3288, 0.3368, 0.0425]

softmax(z) sparsemax(z) argmax(z)
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0

® Sparsemax, unlike softmax, may yield exact zeros.
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Temperature

® Softmax and sparsemax may include a “temperature” parameter T,

® Scale the argument by 1/7": softmax(z/T) and sparsemax(z/T)
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Temperature

® Softmax and sparsemax may include a “temperature” parameter T,
® Scale the argument by 1/7": softmax(z/T) and sparsemax(z/T)
® /Zero temperature limit:

lim softmax(z/T") = lim sparsemax(z/T) = argmax(z)
T—0 T—0

M. Figueiredo (IST) Linear Models LxMLS 2025 84 /118



Temperature

Softmax and sparsemax may include a “temperature” parameter T,

Scale the argument by 1/7": softmax(z/T) and sparsemax(z/T)

Zero temperature limit:

lim softmax(z/T") = lim sparsemax(z/T) = argmax(z)
T—0 T—0

High temperature limit:

Jim so max(z/T) Tl_{r;osparsemax(z/ ) % R’
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Temperature

Softmax and sparsemax may include a “temperature” parameter T,

Scale the argument by 1/7": softmax(z/T) and sparsemax(z/T)

Zero temperature limit:

lim softmax(z/T") = lim sparsemax(z/T) = argmax(z)
T—0 T—0

® High temperature limit:
lim soft T) = I )= ()
Jim so max(z/T) Tgi;osparsemax(z/ ) 1 B

The temperature controls how peaked the softmax is and how sparse
the sparsemax is.
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Classification: The Loss Function Perspective

* Consider binary classifiers of the form g(z) = sign(f(x;6))
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Classification: The Loss Function Perspective
* Consider binary classifiers of the form g(z) = sign(f(x;6))

® In the linear case, f(x;0) = 07x
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Classification: The Loss Function Perspective
* Consider binary classifiers of the form g(z) = sign(f(x;6))
® In the linear case, f(x;0) = 07x

® Both logistic regression and SVM can be seen as minimizing a
regularized loss:

6 = argmin + Z L(f(xi;0),v:)
0 \\,./ ﬁ_/
regularizer loss
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Classification: The Loss Function Perspective

Consider binary classifiers of the form §(z) = sign(f(x;6))

In the linear case, f(x;0) = 67z

Both logistic regression and SVM can be seen as minimizing a
regularized loss:

6 = arg min + Z L(f(xi;0),v:)
0 \\,./ ﬁ_/
regularizer loss

Logistic 10ss: Liggaic(f,y) o log(1 + exp(—y f))

M. Figueiredo (IST) Linear Models LxMLS 2025  85/118



Classification: The Loss Function Perspective

Consider binary classifiers of the form §(z) = sign(f(x;6))

In the linear case, f(x;0) = 67z

Both logistic regression and SVM can be seen as minimizing a
regularized loss:

0= ’ L(f
arg meln + Z (x;;0

regularlzer loss

Logistic 10ss: Ligaic(f,y) o log(1 + exp(—y f))

Hinge loss: Lyng(f,y) x max{0,1 —y f}
. underlies support vector machines (SVM)
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Classification: The Loss Function Perspective (2)

® Both the hinge and the logistic loss can be seen as convex
replacements for the error loss (or misclassification loss)

1 <« sign(f)#y

Lerror(f’ y) o8 1yf<0 = { 0 <« S|gn(f) =y
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Classification: The Loss Function Perspective (2)

® Both the hinge and the logistic loss can be seen as convex
replacements for the error loss (or misclassification loss)

1 < sign(f) #y

Lerror(f’ y) o8 1yf<0 = { 0 <« 5|gn(f) =y

® Naturally, other losses can be used (binomial deviance = logistic):
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Classification: The Loss Function Perspective (2)

® Both the hinge and the logistic loss can be seen as convex
replacements for the error loss (or misclassification loss)

1 <« sign(f)#y

Lerror(f’ y) o8 1yf<0 = { 0 <« S|gn(f) =y

® Naturally, other losses can be used (binomial deviance = logistic):

—— Misclassification
—— Exponential
Binomial Deviance
—— Squared Emror
—— Support Vector

e
©

Loss
15
1

T
0
y-f
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Classification: Empirical and Expected Risk
® The quantity

o & = = DA
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Classification: Empirical and Expected Risk

® The quantity

1 n
. Z L(f(2:6),y:)
n -
i=1
is a sample-based (empirical) estimate of the expected loss (the risk)

E[L(f(X;6),Y)] = R[f(;0)]
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Classification: Empirical and Expected Risk

® The quantity (empirical risk)

n

% Z L(f(x:;0),y;) = :Remp[f('; 0)]
=1

is a sample-based (empirical) estimate of the expected loss (the risk)

E[L(f(X;6),Y)] = R[f(;0)]
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Classification: Empirical and Expected Risk

® The quantity (empirical risk)

n

LS L (@150, 1) = R [F(50)
i=1
is a sample-based (empirical) estimate of the expected loss (the risk)
E[L(f(X:0),Y)] = R[f(;0)]

® Of course, R[f(-;0)] cannot be computed: fx y is unknown.
Instead, we have training data (x1,41), ..., (Tn,Yn) ~ fx,v, iid.
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Classification: Empirical and Expected Risk

® The quantity (empirical risk)

n

1
~ > L(F(@i:0),4:) = Remg[F(:6)]
i=1
is a sample-based (empirical) estimate of the expected loss (the risk)
E[L(f(X:0),Y)] = R[f(;0)]

® Of course, R[f(-;0)] cannot be computed: fx y is unknown.
Instead, we have training data (z1,y1), ..., (®n, yn) ~ fxy, i.id.

® | ogistic regression and SVMs solve regularized ERM problems, with
convex surrogates of the error loss
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Outline

O Optimization for Supervised Learning
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Classification: The Loss Function Perspective

® Recall that supervised learning can be formulated as
regularized empirical risk minimization:

empirical risk

0 = arg moin E L(f(x;0),y;)
%,_/
regularlzer loss
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Classification: The Loss Function Perspective

® Recall that supervised learning can be formulated as
regularized empirical risk minimization:

empirical risk

6 = i 0 L(f
arg min + Z (x:;0),y;)
regularlzer loss

 Quadratic loss: Lguic(f>y) o (f — )?
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Classification: The Loss Function Perspective

® Recall that supervised learning can be formulated as
regularized empirical risk minimization:

empirical risk

6 = i 0 L(f
arg min + Z (x:;0),y;)
regularlzer loss

 Quadratic loss: Lguic(f>y) o (f — )?

® Logistic 10ss: Ligaic(f,y) o log(1 + exp(—y f))
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Classification: The Loss Function Perspective

® Recall that supervised learning can be formulated as
regularized empirical risk minimization:

empirical risk

6 = i 0 L(f
arg min + Z (x:;0),y;)
regularlzer loss

 Quadratic loss: Lguic(f>y) o (f — )?
® Logistic 10ss: Ligaic(f,y) o log(1 + exp(—y f))

® Hinge loss: Lying(f,y) x max{0,1 —y f}
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Classification: The Loss Function Perspective

® Recall that supervised learning can be formulated as
regularized empirical risk minimization:

empirical risk

6 = i 0 L(f
arg min + Z (x:;0),y;)
regularlzer loss

 Quadratic loss: Lguic(f>y) o (f — )?

® Logistic loss: L (f,y) log(l + exp(—y f))

® Hinge loss: Ly (f,y) x max{0,1 —y f}

e Absolute error loss: L, (f,y) o< |f —y| (not covered today)
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Minimizers

® Goal: find 8%, a minimizer of (@) with respect to 8 € R?
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Minimizers
® Goal: find 8%, a minimizer of (@) with respect to 8 € R?
® Types of minimizers:
v global, if F(8*) < F(0), for any 8 € R?
v local, if F(6%) < F(8), for any 8 € R? s.t. ||@ — 0| < ¢, for some ¢.

I/ vl ul
7AW

":0 / min
global min

local min
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Minimizers
® Goal: find 8%, a minimizer of (@) with respect to 8 € R?
® Types of minimizers:
v global, if F(8*) < F(0), for any 8 € R?
v local, if F(6%) < F(8), for any 8 € R? s.t. ||@ — 0| < ¢, for some ¢.

\ [/ 3 |/
N/

[ 1
|/ “V

‘ ; global
e /mm
global min infinitely many lo;:‘al min
global min
® Minimizers:  global = local; local + global.
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Convexity

® F'is a convex function if, for all 81, 65 € R4,

AE[0,1] = F(A0; + (1—N\)B) < AF(6,) + (1 — \)F(62)
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Convexity
® F'is a convex function if, for all 81, 65 € R4,
A€0,1] = F(A01+ (1 —X)02) < AF(01) + (1 —\)F(62)
® [ is a strictly convex function if, for all 81, 65 € RY,

A€]0,1[ = F(A\y + (1 — \)8s) < AF(0;) + (1 — \)F ()

SRS,

T f 1
non-convex convex convex, not strictly
strictly convex
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Convexity
® F'is a convex function if, for all 81, 65 € R4,
A€0,1] = F(A01+ (1 —X)02) < AF(01) + (1 —\)F(62)
® [ is a strictly convex function if, for all 81, 65 € RY,

A€]0,1[ = F(A\y + (1 — \)8s) < AF(0;) + (1 — \)F ()

SERSPE,

T f 1
non-convex convex convex, not strictly
strictly convex

® Convexity = all local minima are global minima.
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Convexity
® F'is a convex function if, for all 81, 65 € R4,
A€0,1] = F(A01+ (1 —X)02) < AF(01) + (1 —\)F(62)
® [ is a strictly convex function if, for all 81, 65 € R4,

A€]0,1[ = F(A\y + (1 — \)8s) < AF(0;) + (1 — \)F ()

SERSPE,

T f 1
non-convex convex convex, not strictly
strictly convex

® Convexity = all local minima are global minima.

e Convexity = continuity.
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Hessian

e For F twice differentiable, the Hessian is

[ 9*F  _9?F . _0°F T
807 00,00 96,00,
00200 92 00200
H(0) =V?F(8) = | 7 3.2 24| ¢ Rxd
2F 2F . 9%F
_69d691 00,002 803 |
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Hessian

® For F twice differentiable, the Hessian is

H(6)

V2F(0)

® [ convex < H(O) =0

*F  _0°F

0607 001002
_82F  9°F
00,00 003
9°F 9°F

| 90200, 90,00,

9?F
060,004
9?F
00,00,

O*F
092

c RdXd

(positive semi-definite — psd)

M. Figueiredo (IST) Linear Models

LxMLS 2025

92/118



Hessian

® For F twice differentiable, the Hessian is

[ 9*F  _9?F . _0°F T
907 90100, 96,00,
00200 92 00200
H(0) =V?F(8) = | 7 3.z 24| ¢ Rxd
2F 2F . 9%F
_69d891 00,002 805 |

® [ convex < H(O) =0 (positive semi-definite — psd)

® F strictly convex < H(0) =0 (positive definite — pd)
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Coercivity
® [ is a coercive function if:

lim F(0)=+oo
(16|00

= = = E DA
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Coercivity

® F'is a coercive function if: lim F(0) =+o0
[10[|—=+o00

® Let G = arg n%in F(0), the set of global minimizers.
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Coercivity

® F'is a coercive function if: lim F(0) =+o0
[10[|—=+o00

® Let G = arg n%in F(0), the set of global minimizers.

e [ is coercive i G#0  (example?)
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Coercivity

® F'is a coercive function if: lim F(0) =+o0
[10[|—=+o00

Let G = arg n%in F(0), the set of global minimizers.

F ' is coercive i G#0  (example?)

£
. . <+
F' is strictly convex - G has at most one element  (example?)
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Coercivity

F is a coercive function if: lim F(0) =+o0

[10[|—=+o00

Let G = arg n%in F(0), the set of global minimizers.

. . <+
Fis coercive G#0  (example?)
. . <+
F' is strictly convex - G has at most one element  (example?)
coercive and coercive, not convex, not
strictly convex strictly convex coercive
I 0* \ . T
G =167 G G=90
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Coercivity

® F'is a coercive function if: lim F(0) =+o0
[10[|—=+o00

Let G = arg n%in F(0), the set of global minimizers.

. . <+
* Fis coercive G#0  (example?)
. . <+
® [ is strictly convex - G has at most one element  (example?)
coercive and coercive, not convex, not
strictly convex strictly convex coercive
I 0* \ . T
G =167 G G="0

® Non-coercivity examples: logistic regression on separable data; linear
regression for n < p.
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Descent Directions

® Definition: 77 is a descent direction at 6 if

F(6p+amn) < F(68y), for some o > 0.
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Descent Directions

® Definition: 77 is a descent direction at 6 if
F(6p+amn) < F(68y), for some o > 0.
® For differentiable F',

nTVF(8y)) <0 < mnisa descent direction.
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Descent Directions

® Definition: 77 is a descent direction at 6 if
F(6p+amn) < F(68y), for some o > 0.
® For differentiable F',

nTVF(6y)) <0 < nisa descent direction.

® Thus, for differentiable F',
.. L s .
0™ is a local minimizer - VF(@*) =0

local min local max saddie point

oh b own s
et ot
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Descent Directions

® Definition: 77 is a descent direction at 6 if
F(6p+amn) < F(68y), for some o > 0.
® For differentiable F',
nTVF(8y)) <0 < mnisa descent direction.

® Thus, for differentiable F',
.. L s .
0™ is a local minimizer - VF(@*) =0

local min local max saddie point

oh b own s
et -

e If F'is convex, 8* is a global minimizer < VF(0*) =0
LxMLS 2025  94/118



Gradient Descent

® Key idea: if not at a minimizer, take a step in a descent direction.

o & = = o
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Gradient Descent

® Key idea: if not at a minimizer, take a step in a descent direction.

® Gradient descent algorithm:
v Start at some initial point 8y € R?
v Fort=1,2,...,
> choose step-size v,

> take a step of size a; in the direction of the negative gradient:

0; =0;_1— atVF(et—l)
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Gradient Descent

e Key idea: if not at a minimizer, take a step in a descent direction.

® Gradient descent algorithm:
v Start at some initial point 8y € R?
v Fort=1,2,...,
> choose step-size v,

> take a step of size a; in the direction of the negative gradient:

0 =0;1 — VF(0:-1)

® Several (many) ways to choose ay; big research topic.
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Gradient Descent

e Key idea: if not at a minimizer, take a step in a descent direction.

® Gradient descent algorithm:
v Start at some initial point 8y € R?
v Fort=1,2,...,
> choose step-size v,

> take a step of size a; in the direction of the negative gradient:

0, =6,_1— atVF(at—l)
® Several (many) ways to choose ay; big research topic.

® Some stopping criterion is used; e.g., ||[VF(0,)| <6
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Convex Case

o = = E DA
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Convex Case
® [ -smoothness,

IVE(©) = VE(O)]2 < L6 — 6|2

= = = E DA
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Convex Case

® [ -smoothness,
IVF(8) = VF(@')|l2 < L||6 — 0|2

e If Fis twice differentiable, L-smoothness < H(0) < LI.
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Convex Case

® [ -smoothness,
IVE(©) = VE(O)]2 < L6 — 6|2
e If Fis twice differentiable, L-smoothness < H(0) < LI.

® /i-strong convexity,

F(8) > F(0')+ (80— 0)'VE®) + gna —0)2
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Convex Case

L-smoothness,

IVE(©) = VE(O)]2 < L6 — 6|2

If F is twice differentiable, L-smoothness < H(0) < LI.

® /i-strong convexity,

F(0) = F(0) + (0 — )"V F(8) + L]0 — 0/}

If F'is twice differentiable, u-strong convexity < H(0) = pul.
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Convex Case

L-smoothness,

IVE(©) = VE(O)]2 < L6 — 6|2

If F is twice differentiable, L-smoothness < H(0) < LI.

® /i-strong convexity,

F(0) = F(0) + (0 — )"V F(8) + L]0 — 0/}

If F'is twice differentiable, u-strong convexity < H(0) = pul.

L
Condition number Kk = —.
1
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L-smoothness and ;—Strongly Convex
by quadratics.

FO)+ F'(0) (n

)

t5ln

® [-smooth and pu—strongly convex function: upper and lower bounded

0ll3

€+ .n‘—o)AVﬁG) r%_n”q‘aui

F(n)

7
L- Smoollness

35&9“02
~ towVEX
F(0)+ F'(0)"(n—0)
;”

7

o & = = o
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L-smoothness and ;—Strongly Convex

® [-smooth and pu—strongly convex function: upper and lower bounded
by quadratics.

F@)+ F'(0) (n—0)+5|n— 0|3 (f'zoe)

v L (2
E(e) + [m-0) 7F(o) +Zli7-3l,

L- Soneoolh wess
F(n)
__sbrou 2
—_ — towVvELX: (/'"'

F(O)+ F'(0)"(n—0)

L >
0 n

* Regularization: if F'(6) is convex, F(0) + 4[|0||3 is pi-strongly convex.
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Gradient Descent for Convex Functions

® Gradient descent with step-size « = 1/L,

K—1

P00 - @) < (1) (F00 - F0)

called linear convergence (2 <y < 1, with A; = F(6;) — F(6")).
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Gradient Descent for Convex Functions

® Gradient descent with step-size « = 1/L,

K—1

P00 - @) < (1) (F00 - F0)

called linear convergence (2 <y < 1, with A; = F(6;) — F(6")).

¢ If 4 =0 (not strongly convex),
* L * (|12
F(0y) — F(07) < 51160 — 673

called sub-linear convergence (ﬁ — 1)
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Gradient Descent for Convex Functions

® Gradient descent with step-size « = 1/L,

K—1

K

F(0,) — F(8") < ( ) (F(80) — F(6"))

called linear convergence (2 <y < 1, with A; = F(6;) — F(6")).
¢ If 4 =0 (not strongly convex),
* L * (|12
F(0y) — F(07) < 51160 — 673
called sub-linear convergence (2t — 1)

A

® In practice, these are very different (next slide).
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Gradient Descent for Convex Functions

® Gradient descent with step-size « = 1/L,

K—1

K

F(0,) — F(8") < ( ) (F(80) — F(6"))

called linear convergence (2 <y < 1, with A; = F(6;) — F(6")).
¢ If 4 =0 (not strongly convex),
* L * (|12
F(0y) — F(07) < 51160 — 673

called sub-linear convergence (Af_l — 1)

® In practice, these are very different (next slide).

® Proofs: see recommended reading (F. Bach).
LxMLS 2025 98118



Gradient Descent: Strongly Convex Case
® The condition number k expresses the problem difficulty.

small &

large K

o & = = o
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Gradient Descent: Strongly Convex Case
® The condition number k expresses the problem difficulty.

;S‘;Iia." K large £
® Convergence for different distributions of eigenvalues.

semi-log plot log-log plot
0y 0 o

log, ol F6) - Fir)]
log ol F6) - Fir)]

-4 —A\ ~ 1Kk -4 —A ~1K
—\ ~ K2 — X\~ K
- = bound - = bound
6" J ry
0 2000 4000 0 1 2 3
t log ,(t)

(pictures from_F. Bach),
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Linear vs Sublinear Convergence

o i
10 H ~O-Sublinear
X: ~{A-Linear
106 H -%-Quadratic
108
A
.10 X
10 0 10 20 30
Number of iterations
® Quadratic ( At

2
A:‘.71

. Ay
— B < 00) and super-linear (5~ — 0)
convergence: not achievable using only gradient information.
L e




Linear vs Sublinear Convergence

Convergence rates

10° 85

AA ~O-Sublinear
X &Qq ~{A~Linear
H -%+Quadratic

106 $
10® Q&G&&&%
84
10 X
10 0 10 20 30
Number of iterations
® Quadratic (A%t — 8 < 00) and super-linear (A?tl —0)
t—1 -

convergence: not achievable using only gradient information.

e QOptimization is a central tool in machine learning; it is a huge field.

M. Figueiredo (IST) Linear Models LxMLS 2025 100/118



Stochastic Gradient “Descent”
* Back to empirical risk minimization: 6 = arg mein F(0)

F(6) = - 3" L(f(@::0), ) (maybe - (6)
=1
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Stochastic Gradient “Descent”
* Back to empirical risk minimization: 6 = arg mein F(0)
1 n
F(0) = — > L(f(xi:0),y:) (maybe + 1(0))
i=1

® For large n, computing VF() is expensive:

VE®) = 1> VL(f(i:0), %)
=1
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Stochastic Gradient “Descent”
* Back to empirical risk minimization: 6 = arg mein F(0)

n

F(6) = - 3" L(f(@::0), ) (maybe - (6)

=1

® For large n, computing VF() is expensive:
1 n
VF(0) = —> VL(f(xi:0), 1)
i=1

® Alternative: stochastic gradient “descent” (SGD):
v Start at some initial point 8y € R?
v Fort=1,2,...,

> sample ¢ € {1,...,n} at random and choose step-size a,

> take a step of size a; in the direction of the negative gradient:
0; =01 — a:VL(f(xi;0:-1),9:)
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® Expected loss (risk): F(60)

Stochastic Gradient Descent

R(0) =Ex y[L(f(X;0),Y)].

o & = = o
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Stochastic Gradient Descent

® Expected loss (risk): F(0) = R(0) = Ex y[L(f(X;0),Y)].

® To do gradient descent, we need

VR(0) = VE[L(f(X;0),Y)] = E[VL(f(X;6),Y)]
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Stochastic Gradient Descent

® Expected loss (risk): F(0) = R(0) = Ex y[L(f(X;0),Y)].

® To do gradient descent, we need
VR(0) = VE[L(f(X;0),Y)] = E[VL(f(X;0),Y)]

® Thus, VL(f(X;0),Y) is an unbiased estimate of VR(0)
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Stochastic Gradient Descent

Expected loss (risk): F'(0) = R(0) =Ex y[L(f(X;0),Y)].

To do gradient descent, we need

VR(0) = VE[L(f(X;0),Y)] = E[VL(f(X;6),Y)]

Thus, VL(f(X;0),Y) is an unbiased estimate of VR(0)

SGD with samples from fx y is a sequence of random variables,
0111 =0, — VL(f(X;6:),Y)
that is, in expectation,

E[6,41] = E[6,] - a/E[VL(f(X:6,),Y)]
= E[Ot] — atVfR(Bt)
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Stochastic Gradient Descent

Expected loss (risk): F'(0) = R(0) =Ex y[L(f(X;0),Y)].

To do gradient descent, we need

VR(0) = VE[L(f(X;0),Y)] = E[VL(f(X;6),Y)]

Thus, VL(f(X;0),Y) is an unbiased estimate of VR(0)

SGD with samples from fx y is a sequence of random variables,
0111 =0, — VL(f(X;6:),Y)
that is, in expectation,

E[0;11] = E[0;] — a4E[VL(f(X;6;),Y)]
== E[Ot] - atVfR(Bt)

® In expectation, SGD by sampling fx y is gradient descent on R(8).
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Convergence of Stochastic Gradient Descent
® SGD uses noisy gradients: G(8), such that E[G(6)] = VF(0)

® True for F(6) = R(6) and for F(0) = 13" | L(f(xi;0),y;).
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Convergence of Stochastic Gradient Descent

® SGD uses noisy gradients: G(8), such that E[G(6)] = VF(0)
® True for F(6) = R(6) and for F(0) = 13" | L(f(xi;0),y;).

® Assumptions: F is convex; ||G(0)||3 < B?; ||6p — 6*|]2 < D.
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Convergence of Stochastic Gradient Descent

SGD uses noisy gradients: G(0), such that E[G(0)] = VF(0)

True for F(8) = R(0) and for F(0) = L 37 | L(f(:;0), ).

Assumptions: F is convex; ||G(0)||3 < B?; ||6p — 6*|]2 < D.

Step size: oy = %.
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Convergence of Stochastic Gradient Descent

SGD uses noisy gradients: G(0), such that E[G(0)] = VF(0)

True for F(8) = R(0) and for F(0) = L 37 | L(f(:;0), ).

Assumptions: F is convex; ||G(0)||3 < B?; ||6p — 6*|]2 < D.

Step size: oy = %.

Zi:l ases—l
t
Zs:l Qs

® Average iterates: 6, =
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Convergence of Stochastic Gradient Descent

SGD uses noisy gradients: G(0), such that E[G(0)] = VF(0)

True for F(8) = R(0) and for F(0) = L 37 | L(f(:;0), ).

Assumptions: F is convex; ||G(0)||3 < B?; ||6p — 6*|]2 < D.

Step size: oy = %.

Zi:l ases—l
t
Zs:l Qs

® Average iterates: 6, =

Then,
E[F(6,) - P(67)] < %jggt)
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Convergence of Stochastic Gradient Descent

SGD uses noisy gradients: G(0), such that E[G(0)] = VF(0)

True for F(8) = R(0) and for F(8) = L "0 | L(f(i;0),v:).

~n

Assumptions: F is convex; ||G(0)||3 < B?; ||6p — 6*|]2 < D.

Step size: oy = %.

Zi:l ases—l
t
Zs:l Qs

® Average iterates: 6, =

Then,
E[F(6,) - P(67)] < %j;g”

® |Important: not practical to compute F'(6;). Selecting the best iterate
is thus impractical and would beat the purpose of SGD.

M. Figueiredo (IST) Linear Models LxMLS 2025 103 /118



Convergence of SGD: Strongly Convex Case

1 n
® Regularization: F(0) = - E L(f(x;0),v:) + g”‘g”%
i=1
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Convergence of SGD: Strongly Convex Case

1 n
® Regularization: F(0) = - E L(f(x;0),v:) + g”‘g”%
i=1

® Consequence: F'is u-strongly convex;
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Convergence of SGD: Strongly Convex Case

1 n
® Regularization: F(0) = - E L(f(x;0),v:) + g”‘g”%
i=1

® Consequence: F'is u-strongly convex;

. 1
® Step size: oy = —
wnt
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Convergence of SGD: Strongly Convex Case

n

1
Regularization: F(0) = - E L(f(x;0),v:) + g”‘g”%
i=1

® Consequence: F'is u-strongly convex;
. 1
® Step size: oy = —

wut

t
. . 1
® Average iterates: 0; = n 268_1
s=1
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Convergence of SGD: Strongly Convex Case

1 n
Regularization: F(0) = - ZL(f(-’Bi; 0),yi) + g”‘g”%
i=1

® Consequence: F'is u-strongly convex;

. 1
® Step size: oy = —
wut

t
. . 1
® Average iterates: 0; = n 268_1
s=1

Then,
2 B%(1+ logt)

B (F(@) - F(6)) < 20
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Convergence of SGD: Strongly Convex Case

1 n
Regularization: F(0) = - ZL(f(fBz'; 0),yi) + gllﬂl%
i=1

® Consequence: F'is u-strongly convex;

. 1
® Step size: oy = —
wut

t
. . 1
® Average iterates: 0; = n 268_1
s=1

Then,
2 B%(1+ logt)

B (F(@) - F(6)) < 20

e Strong convexity speeds up convergence from O(1/v/t) to O(1/t)
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Visual Summary

Finite sums Expectation

2~ ~Vf(z) Vi(z)
-+ Vfi(z) » VF(z,2)
oo zZ~
Draw i € {1,...,n} uniformly. Draw z ~ z
Tr1 = Tk — TV fi(2k) Tk+1 = Tk — Tk VF (2, 2)

Theorem: If f is strongly convex and 7 ~ 1/k,
E(|zx — z*[?) = O(1/k)

(Picture by Gabriel Peyré)
o F = = E 9DHAE
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Stochastic Gradient Descent: Linear Classification

® Linear predictor with margin loss: L(f(x;;0;_1),y:) = £(y;07 ;)
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Stochastic Gradient Descent: Linear Classification
® Linear predictor with margin loss: L(f(x;;0;_1),y:) = £(y;07 ;)

® Several choices (all convex):
v hinge loss (SVM): ¢(u) = max{0,1 — u}
v logistic loss: £(u) = log(1 + exp(—u))
v squared loss: £(u) = (1 — u)?
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Stochastic Gradient Descent: Linear Classification
® Linear predictor with margin loss: L(f(x;;0;_1),y:) = £(y;07 ;)
® Several choices (all convex):
V" hinge loss (SVM): £(u) = max{0,1 — u}
v logistic loss: £(u) = log(1 + exp(—u))
v squared loss: £(u) = (1 — u)?

® From the gradient of the composite function,

Vi(y0'x;) = ds(s) V(y:0” x)

u=y;07x;
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Stochastic Gradient Descent: Linear Classification
® Linear predictor with margin loss: L(f(x;;0;_1),y:) = £(y;07 ;)
® Several choices (all convex):
V" hinge loss (SVM): £(u) = max{0,1 — u}
v logistic loss: £(u) = log(1 + exp(—u))
v squared loss: £(u) = (1 — u)?

® From the gradient of the composite function,

V(6T ;) = LA V(y:0 z;) = (

du u=y; 07 x;

dl(u)
du

Yi | Ti
u=y;07x;

showing that V/(y;07 x;) is co-linear with x;.
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Stochastic Gradient Descent: Linear Classification
® Linear predictor with margin loss: L(f(x;;0;_1),y:) = £(y;07 ;)
® Several choices (all convex):

V" hinge loss (SVM): £(u) = max{0,1 — u}

v logistic loss: £(u) = log(1 + exp(—u))

v squared loss: £(u) = (1 — u)?

® From the gradient of the composite function,

V(6 ) = LY V(y:0 ;) = (‘M(“)

du du

Yi | Ti
u=y;07x;

® Each SGD update moves 6, in a direction parallel to sample x;.

u=y;07x;

showing that V/(y;07 x;) is co-linear with x;.

M. Figueiredo (IST) Linear Models
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The Perceptron Algorithm

® Hinge loss: ¢(u) = max{0,1 — 7}, thus

du 0, otherwise.

dl(u) _{ -1, fu<r

ignoring the non-differentiability at v = 7.
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The Perceptron Algorithm
® Hinge loss: ¢(u) = max{0,1 — 7}, thus

dl(u) { -1, fu<r

du 0, otherwise.
ignoring the non-differentiability at v = 7.
® Each iteration of SGD, with constant step size «, choose sample i,

yix; ify0lx; <1

01 =6+ { 0, otherwise.
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The Perceptron Algorithm
® Hinge loss: ¢(u) = max{0,1 — 7}, thus
dl(u) _ { -1, ifu<r
du 0, otherwise.
ignoring the non-differentiability at v = 7.
® Each iteration of SGD, with constant step size «, choose sample i,

yix; ify0lx; <1

01 =6+ { 0, otherwise.

® Points with wrong classification (y;0f «; < 0) or insufficient margin
(y;0] x; < 7) move ; towards/away from x; depending on v;
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The Perceptron Algorithm

® Hinge loss: ¢(u) = max{0,1 — 7}, thus

dl(u) [ -1, ifu<T
du 0, otherwise.

ignoring the non-differentiability at v = 7.

Each iteration of SGD, with constant step size «, choose sample 7,

yix; ify0lx; <1

01 =6+ { 0, otherwise.

Points with wrong classification (y;0] z; < 0) or insufficient margin
(y;0] x; < 7) move ; towards/away from x; depending on v;

This is the famous Perceptron algorithm, proposed in 1957 by Frank
Rosenblatt (with 7 = 0), the percursor of modern neural networks.
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A Bit of History: The Perceptron
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The New York Times, 1958 Minsky and Pappert, 1969

M. Figueiredo (IST) Linear Models LxMLS 2025 108 /118



Perceptron Mistake Bound

® Definitions:

v The training data is linearly separable with margin v > 0 iff there is a
weight vector u, with ||u|| = 1, such that

ypulx, >, Vn.

2A. Novikoff, “On convergence proofs for perceptrons”, Symposium on the
Mathematical Theory of Automata, 1962.
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Perceptron Mistake Bound

® Definitions:

v The training data is linearly separable with margin v > 0 iff there is a
weight vector u, with ||u|| = 1, such that

Yn ulx, > v, Vn.

v" Radius of the data: R = max||x,]|.
n

2A. Novikoff, “On convergence proofs for perceptrons”, Symposium on the
Mathematical Theory of Automata, 1962.
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Perceptron Mistake Bound

e Definitions:

v The training data is linearly separable with margin v > 0 iff there is a
weight vector u, with ||u|| = 1, such that

Yn uTa:n >, Vn.

v" Radius of the data: R = max ||x,|.
n

® Then, the following bound of the number of mistakes holds?

Theorem

The perceptron algorithm is guaranteed to find a separating hyperplane
2 0
after at most % mistakes (non-zero updates).

2A. Novikoff, “On convergence proofs for perceptrons”, Symposium on the
Mathematical Theory of Automata, 1962.
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Novikoff’s Theorem: One-Slide Proof

® Recall that non-zero updates (mistakes) are: 0,11 = 0; + y; ;.
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Novikoff’s Theorem: One-Slide Proof

® Recall that non-zero updates (mistakes) are: 0,11 = 0; + y; ;.

® Lower bound on [|6;]|, after M mistakes:

u’0, = w0, + Yi u'z;
> ul0 1+
> ul'fy+ M~y = M~y (recall 8y = 0)
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Novikoff’s Theorem: One-Slide Proof

® Recall that non-zero updates (mistakes) are: 0,11 = 0; + y; ;.
® Lower bound on [|6;]|, after M mistakes:

u’0, = w0, + Yi u'z;
> ul0,_q+~
> ul'fy+ M~y = M~y (recall 8y = 0)
Thus, ||0;] = |Ju| 1|6:]] > w6, > M~ (Cauchy-Schwarz)
—

1
¢ Upper bound on ||6;]]: <0, if mistake

2 2 2 T
10:]7 = [|0-1l]" + llz” + 2 3 0;_
< ||9t—1||2+R2
< M R?
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Novikoff’s Theorem: One-Slide Proof

® Recall that non-zero updates (mistakes) are: 0,11 = 0; + y; ;.
® Lower bound on [|6;]|, after M mistakes:

u’0, = w0, + Yi u'z;
> w01+
> w0+ M~y = M~ (recall 8y = 0)
Thus, ||0;] = |Ju| 1|6:]] > w6, > M~ (Cauchy-Schwarz)
—

1
¢ Upper bound on ||6;]]: <o, if mistake

—_—~—
161> = 16c1l” + [loil* +2 v 6 s
< ||9t—1||2+R2
< MR?

® Equating both sides, (M~)? < [|6:]|> < M R? = M < R?/~? [

M. Figueiredo (IST) Linear Models

LxMLS 2025 110 /118



Implicit Regularization

® SGD in linear prediction, with i; denoting the sample at iteration ¢,
0, =0, 1 —are;, x;,

where e;, depends on the loss gradient and label y;, .
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Implicit Regularization

® SGD in linear prediction, with i; denoting the sample at iteration ¢,
0, =0, 1 —are;, x;,
where e;, depends on the loss gradient and label y;, .

® Minibatch or full batch gradient descent:

0,5 = Gt,l — O E €; &Lj
JEB:
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Implicit Regularization

SGD in linear prediction, with i; denoting the sample at iteration ¢,

0, =0, 1 —are;, x;,

where e;, depends on the loss gradient and label y;, .

Minibatch or full batch gradient descent:

0,5 = Ot,l — O E €; &Lj
JEB:

Initializing at ) =0 = 6, € span(xy, ..., T,).

If there are multiple 6* with F'(6*) = 0, and the predictions only
depend on 87 x;, this corresponds to solving

moin 16]13, such that L(6Tx;,y;) =0, fori=1,...,n.
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Implicit Regularization

SGD in linear prediction, with i; denoting the sample at iteration ¢,

0, =0, 1 —are;, x;,

where e;, depends on the loss gradient and label y;, .

Minibatch or full batch gradient descent:

0,5 = Ot,l — O E €; &Lj
JEB:

Initializing at ) =0 = 6, € span(xy, ..., T,).

If there are multiple 6* with F'(6*) = 0, and the predictions only
depend on 87 x;, this corresponds to solving

moin 10112, such that L(6Tx;,y;) =0, fori=1,...,n.

This is sometimes called the overparametrized or interpolating regime
and is a central tool in the understanding of modern deep learning.

M. Figueiredo (IST) Linear Models LxMLS 2025 111 /118



Explicit Regularization: Weight Decay

® Objective function F'(6 ZL f(xi; 0 ||9||2
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Explicit Regularization: Weight Decay

® Objective function F'(6 ZL f(xi; 0 ||9||2

® Let g(0) be a (batch or stochastic) gradient of the empirical risk

® Gradient of the regularizer: A0
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Explicit Regularization: Weight Decay

Objective function F(6 Z L(f(x;0 ||9”2

Let g(0) be a (batch or stochastic) gradient of the empirical risk

Gradient of the regularizer: A @

Gradient descent (batch or stochastic):

0 =01 — o (g(01—1) + 20;_1)
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Explicit Regularization: Weight Decay

Objective function F(6 Z L(f(x;0 ||9”2

Let g(0) be a (batch or stochastic) gradient of the empirical risk

Gradient of the regularizer: A @

Gradient descent (batch or stochastic):

0 =61 — a; (g(61—1) + 20;_1)
=(1-Xay)01—arg(6i-1)
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Explicit Regularization: Weight Decay

Objective function F(6 Z L(f(x;0 ||9”2

Let g(0) be a (batch or stochastic) gradient of the empirical risk

Gradient of the regularizer: A @

Gradient descent (batch or stochastic):

0 =01 — o (g(01—1) + 20;_1)
=(1—-Xay)0—1 — o g(0;i-1)

For o and X small enough, 0 < (1 —Aay) <1
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Explicit Regularization: Weight Decay

Objective function F(6 Z L(f(x;0 ||9”2

Let g(@) be a (batch or stochastic) gradient of the empirical risk

Gradient of the regularizer: A @

Gradient descent (batch or stochastic):

0 =61 — oy (g(6i—1) + \0;_1)
=(1—-Xay)0—1 — o g(0;i-1)

For a; and A small enough, 0 < (1 — A ay) <1

0,_1 is shrunk/decayed before being updated: weight decay
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Tricks of the Trade

® Choosing the step size is critical: active research area.

= = = E DA
M. Figueiredo (IST) Linear Models



Tricks of the Trade

® Choosing the step size is critical: active research area.

® Decay the step size: either continuously, or after each epoch (a single
pass through some set of samples, e.g., the whole training set) .
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® Choosing the step size is critical: active research area.

® Decay the step size: either continuously, or after each epoch (a single
pass through some set of samples, e.g., the whole training set) .

® Shuffling the data after each epoch.
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Tricks of the Trade

Choosing the step size is critical: active research area.

Decay the step size: either continuously, or after each epoch (a single
pass through some set of samples, e.g., the whole training set) .

Shuffling the data after each epoch.
Minibatching: instead of a single sample, use minibatches (size m)

0, =0;,_1— E Z vL(f(mj;etfl)ayj)
j € minibatch ¢
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Momentum

® Momentum: remember the previous step, combine it in the update:
0, =60; 1 — g(0;1) +71(0r—1 — 0;2);

g(8,) is the gradient estimate (batch, single sample, minibatch).
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Momentum

® Momentum: remember the previous step, combine it in the update:

0, =01 —g(60,_1) + 7(0—1 — 6,_2);

g(0;) is the gradient estimate (batch, single sample, minibatch).

® Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.

() starting Point

e 4

~CJ

M. Figueiredo (IST) Linear Models LxMLS 2025  114/118



Adaptive Gradient (AdaGrad)

e AdaGrad3: use separate step sizes for each component of ;.

3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011
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Adaptive Gradient (AdaGrad)

e AdaGrad3: use separate step sizes for each component of ;.

® For component j of 6,

t

Gie =3 (9:(00)" = Gju1 + (9(00))”

t'=1

3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011
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Adaptive Gradient (AdaGrad)

e AdaGrad3: use separate step sizes for each component of ;.

® For component j of 6,

t
2 2
Gja =D (9i(6:))" = Gju1 + (9;(61))
=1
® Scale the update of each component (¢ for numerical stability)
a

0;it =011 — ——=—-—q;(0;_
Gt Gt—1 Gj,t—1+€ gg( t 1)

3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011

M. Figueiredo (IST) Linear Models LxMLS 2025  115/118



Adaptive Gradient (AdaGrad)

e AdaGrad3: use separate step sizes for each component of ;.
® For component j of 6y,
: 2 2
Gip =Y (95(60))" = Gje1 + (9;(61))
t=1
[

Scale the update of each component (e for numerical stability)
a

VGit-1+e

® Advantages: robust to choice of «; robust to different parameter
scaling.

Oj1=0j1-1— 9;(0r-1)

3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011
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Adaptive Gradient (AdaGrad)

e AdaGrad3: use separate step sizes for each component of ;.

® For component j of 6y,

t

Gjt = Z(gj(et’))2 =Gjt-1+ (gj(et))z

=1
® Scale the update of each component (¢ for numerical stability)
a

VGit-1+e

® Advantages: robust to choice of «; robust to different parameter
scaling.

050 =0j1—1 — CY

® Drawbacks: updated step size (learning rate) vanishes, since
Git 2 Gt
3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011
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Root Mean Square Propagation (RMSProp)

® RMSProp* addresses the vanishing learning issue.

*Presented by G. Hinton in a Coursera lecture.
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Gt =7Gj-1+ (1 =) (gj(et))2

*Presented by G. Hinton in a Coursera lecture.
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Root Mean Square Propagation (RMSProp)

® RMSProp* addresses the vanishing learning issue.

® For component j of 6,

Gt =7Gj-1+ (1 =) (gj(et))2

® Forgetting factor «y (typically 0.9): G;; may be smaller than G, ;.

*Presented by G. Hinton in a Coursera lecture.
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Root Mean Square Propagation (RMSProp)

RMSProp* addresses the vanishing learning issue.

For component j of 6,

Gt =7Gj-1+ (1 =) (gj(et))2

Forgetting factor « (typically 0.9): G;; may be smaller than G, ;.

Scale the update of each component

(0%

«/Gj,t—l +e€ 9i

0t = bj1-1— (6:-1)

*Presented by G. Hinton in a Coursera lecture.
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Root Mean Square Propagation (RMSProp)

RMSProp* addresses the vanishing learning issue.

For component j of 6,

Gt =vGjs1+ (1—7)(g;(8,))°

Forgetting factor « (typically 0.9): G;+ may be smaller than G, ;.

Scale the update of each component
(6

«/Gj,t—l +e€ 9i

Advantages: robust to choice of « (typically 0.01 or 0.001); robust to
different parameter scaling.

(61-1)

Ojt = 0jt—1 —

*Presented by G. Hinton in a Coursera lecture.
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Adam Algorithm: Adaptive Moment Estimation
e Adam®: combines aspects of AdaGrad and RMSProp.

°D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220K-citations)

M. Figueiredo (IST) Linear Models LxMLS 2025 117 /118



Adam Algorithm: Adaptive Moment Estimation
e Adam®: combines aspects of AdaGrad and RMSProp.

® Separate moving averages of gradient and squared gradient.

°D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220K-citations)
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Adam Algorithm: Adaptive Moment Estimation
e Adam®: combines aspects of AdaGrad and RMSProp.

® Separate moving averages of gradient and squared gradient.
e |nitial: m; =0, v; = 0 (typical f; = 0.9, B = 0.999, a = 1073):

my = ﬁlmt_l + (1 - 51)97&
vy = fovi_1 + (1 — B2)g?
my =my /(1 — BY) (bias correction due to o = 0)

0y = v /(1 — L) (bias correction due to vy = 0)
my :

011 =0, —a—— component-wise

t+ t \/’U_t+ B ( )

°D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220K-citations)
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Adam Algorithm: Adaptive Moment Estimation
e Adam®: combines aspects of AdaGrad and RMSProp.

® Separate moving averages of gradient and squared gradient.
e |nitial: m; =0, v; = 0 (typical f; = 0.9, B = 0.999, a = 1073):

my = ﬁlmt_l + (1 - 51)gt
vy = fovi_1 + (1 — B2)g?
my =my /(1 — BY) (bias correction due to g = 0)

0y = v /(1 — L) (bias correction due to vy = 0)

A

0,11 =6, —« (component-wise)

my
VU + €
® Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

°D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220K-citations)
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Adam Algorithm: Adaptive Moment Estimation
e Adam®: combines aspects of AdaGrad and RMSProp.

® Separate moving averages of gradient and squared gradient.
e |nitial: m; =0, v; = 0 (typical f; = 0.9, B = 0.999, a = 1073):

my = ﬁlmtq + (1 - 51)gt
Vi = /Bg’vt—l + (1 - ﬁ2)gt2
my =my/(1— B (bias correction due to o = 0)

0y = v /(1 — L) (bias correction due to vy = 0)

my
VU + €
® Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

0,11 =6, —« (component-wise)

® Drawbacks: Possible convergence issues and noisy gradient estimates.

°D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220K-citations)
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Thank you!  Questions?
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