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Supervised Learning
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Types of Machine Learning
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Why Study Linear Models?

• In 2025, deep neural networks (DNNs) are ubiquitous!

• Why a lecture on linear models?

X Underlying machine learning (ML) core concepts are the same.

X Theory (statistics and optimization) is easier to understand.

X Still widely used (specially if data is scarce)

X They are a component of DNNs.

X Natural starting point for studying ML.
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Spherical Cow
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Good Advice
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Linear Classifiers and Neural Networks
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Outline

1 Introduction

2 Regression

3 Classification

4 Optimization for Supervised Learning
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Inputs and Outputs
• Input x 2 X

X e.g., a news article, an email message, a face image, a collection of
laboratory test results, features of a credit card transaction, features of
a car, features of a house, ...

• Output y 2 Y

X e.g., fake/true, spam/legitimate, an identity, a diagnostic,
fraud/legitimate, fuel consumption, price, ...

• Input/output pair: (x,y) 2 X⇥ Y

X e.g., a news article together with a topic

X e.g., a sentence together with its translation

X e.g., a sequence of words (tokens) together with the next word

X e.g., an image partitioned into segmentation regions

M. Figueiredo (IST) Linear Models LxMLS 2025 10 / 118



Inputs and Outputs
• Input x 2 X

X e.g., a news article, an email message, a face image, a collection of
laboratory test results, features of a credit card transaction, features of
a car, features of a house, ...

• Output y 2 Y

X e.g., fake/true, spam/legitimate, an identity, a diagnostic,
fraud/legitimate, fuel consumption, price, ...

• Input/output pair: (x,y) 2 X⇥ Y

X e.g., a news article together with a topic

X e.g., a sentence together with its translation

X e.g., a sequence of words (tokens) together with the next word

X e.g., an image partitioned into segmentation regions

M. Figueiredo (IST) Linear Models LxMLS 2025 10 / 118



Inputs and Outputs
• Input x 2 X

X e.g., a news article, an email message, a face image, a collection of
laboratory test results, features of a credit card transaction, features of
a car, features of a house, ...

• Output y 2 Y

X e.g., fake/true, spam/legitimate, an identity, a diagnostic,
fraud/legitimate, fuel consumption, price, ...

• Input/output pair: (x,y) 2 X⇥ Y

X e.g., a news article together with a topic

X e.g., a sentence together with its translation

X e.g., a sequence of words (tokens) together with the next word

X e.g., an image partitioned into segmentation regions

M. Figueiredo (IST) Linear Models LxMLS 2025 10 / 118



Inputs and Outputs
• Input x 2 X

X e.g., a news article, an email message, a face image, a collection of
laboratory test results, features of a credit card transaction, features of
a car, features of a house, ...

• Output y 2 Y

X e.g., fake/true, spam/legitimate, an identity, a diagnostic,
fraud/legitimate, fuel consumption, price, ...

• Input/output pair: (x,y) 2 X⇥ Y

X e.g., a news article together with a topic

X e.g., a sentence together with its translation

X e.g., a sequence of words (tokens) together with the next word

X e.g., an image partitioned into segmentation regions

M. Figueiredo (IST) Linear Models LxMLS 2025 10 / 118



Decisions

M. Figueiredo (IST) Linear Models LxMLS 2025 11 / 118



Optimal Decisions

• Goal: find a “good” decision function: h : X ! Y

• Ideal situation: joint distribution fX,Y (x,y) is known.

• We know how to assess decisions, i.e., we have a loss function:

L(y, by) = loss of deciding by if the truth is y

• Optimal decision functions minimize the expected loss or risk:

h⇤ = argmin
h2H

EX,Y
⇥
L(Y , h(X))

⇤

= argmin
h2H

Z

X

Z

Y

fX,Y (x,y)L(y, h(x)) dy dx,

where H is some set of allowed functions.

• Unfortunately, fX,Y (x,y) is seldom known: use supervised learning
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Supervised Learning

• Rather than knowing fX,Y (x,y), ...

• ... we have a collection of input/output pairs (training data)

D = (x1,y1), ..., (xn,yn) 2 X⇥ Y (xi 2 X, yi 2 Y)

• Same goal: learn a predictor/decision function h : X ! Y.

• Two standard approaches:

X Generative: estimate fX,Y (x,y) from D; go back to the previous slide.

X Discriminative: replace the expected risk with the empirical risk,

h⇤ = arg min
h2H

1

n

nX

i=1

L(yi, h(xi)) (empirical risk minimization – ERM)

• This lecture focuses on discriminative supervised learning.
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What about self-supervised learning?

• In its most basic form, it’s just supervised learning with
programmatically defined training outputs.

• Classical example: next word prediction.
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Regression, Classification, and Variants

• Regression: quantitative Y. Classification: categorical Y (no order).

• Simple regression: Y = R, or Y = [0, 1], or Y = R+, or ...
X e.g., given a news article, how much time a user will spend reading it?

• Multivariate/multiple regression: Y = RK , or Y = RK
+ , or Y = �K , ...

X e.g., denoise an image, estimate class probabilities, ...

• Binary classification: Y = {0, 1}, or Y = {a, b}, ...
X e.g., spam detection, fraud detection, target detection, ...

• Multi-class classification: Y = {1, 2, . . . ,K} (order is irrelevant!)
X e.g., topic classification, image classification, word prediction, ...

• Structured classification: Y exponentially large and structured
X e.g., machine translation, caption generation, image segmentation, ...
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Feature Representations

• Feature engineering is (was?) an important step for linear models:

X Bag-of-words features for text, parts-of-speech, ...

X SIFT features and wavelet representations in computer vision

X Other categorical, Boolean, continuous features, ...

X Decades of research in machine learning, natural language processing,
computer vision, image analysis, speech processing, ...
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Feature Representations

• Feature represent information about an “object” x

• Typical approach: a feature map � : X ! Rd

• �(x) is a (maybe high-dimensional) feature vector

• Feature vectors may mix categorical and continuous features

• Categorical features are often reduced to one-hot binary features:

ey := (0, . . . , 0, 1|{z}
position y

, 0, . . . , 0) 2 {0, 1}K represents class y

• Categorical features (e.g., words in a sentence) may be represented by
vectors (embeddings).
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• Categorical features are often reduced to one-hot binary features:

ey := (0, . . . , 0, 1|{z}
position y

, 0, . . . , 0) 2 {0, 1}K represents class y

• Categorical features (e.g., words in a sentence) may be represented by
vectors (embeddings).
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Representation/Feature Engineering vs Learning

• Feature engineering (FE) is “alchemy”:

X it requires deep domain knowledge
(linguistics in NLP, vision in computer vision, ...)

X usually very time-consuming

• FE allows incorporating knowledge, it is a form of inductive bias

• FE is still widely used in practice, namely in data-scarce scenarios

• Modern alternative: representation learning a.k.a. deep learning

Monday’s lecture
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Outline

1 Introduction

2 Regression

3 Classification

4 Optimization for Supervised Learning
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Linear Regression: A Picture

“When you’re fundraising, it’s AI.

When you’re hiring, it’s ML.

When you’re implementing, it’s just linear regression” (B. Schwartz)
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Linear (Nonlinear) Regression

• “Linear” regression may
be nonlinear
(more later)

• Beware the
inductive bias

xkcd.com
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Regression

• In a nutshell: build a “machine” that predicts/estimates/guesses a
quantity y from of other “quantities”/“features” x1,...,xp

• Fundamental tool in data analysis, thus in much of science (biology,
social sciences, economics, physics, ...) and engineering.

• Learning/training: given a collection of examples (training data)

D =
�
(x1, y2), ..., (xn, yn)

�

..find the “best” predictor/decision function h 2 H.

• Notation: bold = vector or matrix (e.g. x, X).
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Linear Regression

• H only contains linear (a�ne) functions:

h(x) = w0 +
pX

j=1

wjxj

= w0 +wTx = w0 + hw,xi = w0 +w · x

• Standard loss: L(y, ŷ) = (y � ŷ)2 (why? what assumptions?)

• Empirical risk and residual sum of squares (RSS)

Remp[w, w0] =
1

n

nX

i=1

(w0 +wTxi| {z }
ŷi

�yi)
2 =

1

n
RSS(w, w0)

• Empirical risk minimization (ERM) = least squares (LS) regression

(ŵ, ŵ0)ERM = (ŵ, ŵ0)LS = arg min
w,w0

Remp[w, w0]
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• Empirical risk and residual sum of squares (RSS)

Remp[w, w0] =
1

n

nX

i=1

(w0 +wTxi| {z }
ŷi
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Linear Regression: Statistical Assumptions

• The inputs x1, ...,xn are seen as deterministic, given.

• The y1, ..., yn are conditionally independent, given x1, ...,xn.

• Each yi is a Gaussian noisy version of a “clean” value w0 +wTxi

Yi = w0 +wTxi +Ni, where Ni ⇠ N(0,�2)

• Thus, fY |X(yi|xi) = N(yi|w0 +wTxi,�
2)

• Likelihood

and log-likelihood function

fY1,...,Yn(y1, ..., yn|x1, ...,xn,w, w0,�
2) =

nY

i=1

N(yi|w0 +wTxi,�
2)

log fY1,...,Yn(y1, ..., yn|x1, ...,xn,w, w0,�
2) = K� 1

2�2

nX

i=1

(w0 +wTxi�yi)
2

• Maximum likelihood (ML) estimate: (ŵ, ŵ0)ML = (ŵ, ŵ0)ERM
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Linear Regression: Another Picture

From: Hastie, Tibshirani, Friedman, “The Elements of Statistical Learning”, Springer, 2009.
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Linear Regression: Getting Rid of w0

• Replace each original xi with xi =

2

6664

1
xi1
...
xip

3

7775
2 Rp+1

• Let w now denote a (p+ 1)-dimensional vector: w =

2

6664

w0

w1
...
wp

3

7775
2 Rp+1

• The o↵set/bias w0 is absorbed into wTxi, thus

ŵLS = argmin
w

nX

i=1

(yi �wTxi)
2

• From now on, we will mostly ignore w0.
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ŵLS = argmin
w

nX

i=1

(yi �wTxi)
2

• From now on, we will mostly ignore w0.

M. Figueiredo (IST) Linear Models LxMLS 2025 27 / 118



Linear Regression: Vector Notation

• Least squares regression,

ŵLS(y) = arg min
w2Rp

nX

i=1

(yi � xT
i w)2 = arg min

w2Rp
ky �Xwk22

where X is the design matrix

X =

2

6664

xT
1

xT
2
...
xT
n

3

7775
=

2

6664

x11 · · · x1p
x21 · · · x2p
...

. . .
...

xn1 · · · xnp

3

7775
2 Rn⇥p y =

2

6664

y1
y2
...
yn

3

7775
2 Rn

• Gradient: rwky �Xwk22 = 2XT (Xw � y)

• Equating to zero,

ŵLS(y) = solutionw
�
XT (Xw � y) = 0

�

=
�
XTX

��1
XTy

... if XTX is invertible, i.e., rank(X) = p, requiring n � p.
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A Classic: Coe�cient of Determination R2

• Total sum of squares: TSS =
Pn

i=1(yi � ȳ)2 (variance ⇥n)

• Sum of squared residuals: SSR =
Pn

i=1(yi � ŵTxi)2

• Coe�cient of determination:

R2 = 1� SSR

TSS
= 1� FV U (1� fraction of variance unexplained)
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The Geometry of Linear Regression

• Predicted values at the sampled points:

ŷ = XŵLS(y) = X
�
XTX

��1
XT

| {z }
hat matrix P 2 Rn⇥n

y = Py

• Matrix P is a projection matrix; it is idempotent, PP = P :

PP = X
�
XTX

��1
XTX

�
XTX

��1
XT = X

�
XTX

��1
XT = P

• Clearly, ŷ 2 range(X) (span of the columns of X); in fact,

Py = X
�
argmin

w
ky �Xwk22

| {z }
ŵ
LS

(y)

�

= arg min
z2range(X)

ky � zk22

i.e., the orthogonal projection onto range(X).
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Geometry of Linear Regression: Euclidean Projection

This picture is in Rn
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Going Non-Linear

• To express non-linearities, just replace x with �(x),

� : Rp ! Rd, �(x) =

2

64
�0(x)

...
�d�1(x)

3

75 (typically �0(x) = 1)

• Components of � often called features, and � a feature map.

• E.g., final layer of a deep network:
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Going Non-Linear (but staying linear)

• To express non-linearities, just replace x with �(x),

� : Rp ! Rd, �(x) =

2

64
�0(x)

...
�d�1(x)

3

75 (typically �0(x) = 1)

• The LS criterion becomes

ŵLS = argmin
w

nX

i=1

(yi �wT�(xi))
2

= argmin
w

ky �Xwk22

=
�
XTX

��1
XTy

re where the design matrix X is now

X =

2

64
�0(x1) · · · �d�1(x1)

...
. . .

...
�0(xn) · · · �d�1(xn)

3

75 2 Rn⇥d
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Example: Polynomial Regression

• Order-k polynomial regression in R:

�(x) = [1, x, x2, . . . , xk]T

• Order-k polynomial regression in R2:

�(x) = [1, x1, x2, x
2
1, x1x2, x

2
2, . . . , x1x

k�1
2 , xk2]

T

...all monomials of order up to k

• Order-k polynomial regression in Rp:

�(x) = “vector with all monomials of degree up to k” 2 Rd

• which has dimension

d =

✓
p+ k
k

◆
=

(p+ k)!

k! p!
�
⇣p+ k

k

⌘k

...exponential in k
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Other Types of Non-Linear Regression

• Radial basis functions (RBF): �j(x) =  
⇣ 1

↵j
kx� cjk2

⌘

...with fixed centers cj and widths ↵j

• Typical choices:

X Gaussian RBF (GRBF):  (r) = exp(�r2)

X Thin plate spline RBF (TPSRBF):  (r) = r2 log r

• Spline regression: each �j is a piece-wise polynomial function.

• Kernels: more later.
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Example of Gaussian RBF Regression

M. Figueiredo (IST) Linear Models LxMLS 2025 36 / 118



Ridge Regression

• If rank(X) < p (for example, if n < p), ŵLS cannot be computed,

(XTX) 2 Rp⇥p; rank(X) < p ) (XTX)�1 does not exist

• The classical alternative is ridge regression:

ŵridge = argmin
w

ky �Xwk22 + � kwk22

=
⇣
XTX + �I

⌘�1
XTy

• XTX is positive semi-definite:
⇣
XTX + �I

⌘
is invertible, for � > 0

• Can be seen as Bayesian estimate with Gaussian prior

fW (w) = N

⇣
w; 0,

1

�
I
⌘

• Known by other names, in other contexts: weight decay, penalized
least squares, Tikhonov regularization, `2 regularization,...

M. Figueiredo (IST) Linear Models LxMLS 2025 37 / 118



Ridge Regression

• If rank(X) < p (for example, if n < p), ŵLS cannot be computed,
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Ridge Regression: Illustration

Even if ŵLS can be computed, ŵridge may preferable (lower MSE)

Example: fitting an order-14 polynomial to 21 points in R

M. Figueiredo (IST) Linear Models LxMLS 2025 38 / 118



Ridge Regression: Illustration
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Bias-Variance Decomposition
• Illustration with p = 1.

• The bias-variance decomposition (var[U ] = E[U2]� E[U ]2)

MSE = E
⇥
(ŵ(Y )� w)2

⇤
= var

⇥
ŵ(Y )]

| {z }
variance

+E
⇥
ŵ(Y )� w

⇤2
| {z }
squared bias

• Bias-variance trade-o↵. How to choose �?
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Bias-Variance Decomposition: Model Complexity

• Bias-variance trade-o↵ also w.r.t. complexity

Pictures by Sebastian Raschka, 2023.
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Choosing � via Cross Validation (CV)

• Available data (x1, y1), ..., (xn, yn)

• Split into K disjoint subsets (folds), each with n
K samples: S1, ..., SK

• For each k 2 {1, ...,K}, learn ŵ(k)
ridge,� from all the samples not in Sk.

• Estimate the MSE using Sk

[MSEk(�) =
K

n

X

i2Sk

�
yi � xT

i ŵ
(k)
ridge,�

�2

• Choose � by minimizing the average MSE estimate:

�⇤ = argmin
�

KX

k=1

[MSEk(�) = argmin
�

KX

k=1

X

i2Sk

�
yi � xT

i ŵ
(k)
ridge,�

�2

• K-fold CV; common choices are K = 5 and K = 10.

• Extreme case: K = n, leave-one-out CV (LOOCV).
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(k)
ridge,�

�2

• K-fold CV; common choices are K = 5 and K = 10.

• Extreme case: K = n, leave-one-out CV (LOOCV).

M. Figueiredo (IST) Linear Models LxMLS 2025 41 / 118



Choosing � via Cross Validation (CV)

• Available data (x1, y1), ..., (xn, yn)

• Split into K disjoint subsets (folds), each with n
K samples: S1, ..., SK

• For each k 2 {1, ...,K}, learn ŵ(k)
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(k)
ridge,�

�2

• Choose � by minimizing the average MSE estimate:

�⇤ = argmin
�

KX

k=1

[MSEk(�) = argmin
�

KX

k=1

X

i2Sk

�
yi � xT

i ŵ
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Illustration od 10-fold CV
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Dual Variables: Ridge Regression
• Ridge regression: ŵridge(y) is the solution w.r.t. w of

�
XTX + �I

�
w = XTy , ŵridge(y) =

1

�
XT

�
y �Xŵridge(y)

�

that is,

ŵridge(y) = XT↵ with ↵ =
1

�

�
y �Xŵridge(y)

�

• ŵridge(y) =
nX

i=1

↵ixi, a linear combination of rows of X

• Predicted value for some new point x:

ŷ(x) = xT ŵridge(y) =
nX

i=1

↵i (x
Txi)

... linear combination of the inner products of x with the xi
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Dual Variables: Ridge Regression (2)

• Ridge regression in dual variables:

ŵridge(y) = XT↵ with ↵ =
1

�

�
y �Xŵridge(y)

�

• Inserting the first equality in the second one, solving for ↵

↵ =
1

�

�
y �XXT↵

�
, ↵ =

�
�I +XXT

��1
y

thus

ŵridge(y) = XT
�
�I +XXT

��1

| {z }
n⇥n inversion

y

=
�
XTX + �I

��1

| {z }
p⇥p inversion

XTy

• XXT is called the Gram matrix (i.e., (XXT )ij = xT
i xj)
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Kernel Regression

• Recall that, in dual variables,

ŷ(x) =
nX

i=1

↵i (x
Txi), with ↵ =

�
�I +XXT

��1
y

• ... XXT is the Gram matrix, i.e., (XXT )ij = xT
i xj

• Data points are only involved via inner products: xT
i xj and xTxj

• To go non-linear, use a feature map � : Rp ! Rd,

ŷ(x) =
nX

i=1

↵i h�(x),�(xi)i, with ↵ =
�
�I +G

��1
y,

• G is still the Gram matrix, that is, Gij = h�(xi),�(xj)i

• Feature map moves inner products from Rp to Rd. Is that bad?
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Kernel Regression (2)

• Motivation example: order 2 polynomial regression in R2:

�(x) = �([x1, x2]
T ) = [1, x1

2, x2
2,
p
2x1 x2]

• Computing the inner product in R4

h�(x),�(x0)i = 1 + x1
2 x01

2 + x2
2 x02

2 + 2x1 x
0
1 x2 x

0
2 = 1 + hx,x0i2

• This inner product in R4 is a function of that in R2.

• This is called a kernel: K(x,x0) = h�(x),�(x0)i

• Kernel least squares regression:

ŷ(x) =
nX

i=1

↵iK(x,xi), with ↵ =
�
�I +G

��1
y,

• G is the Gram matrix, that is, Gij = K(xi,xj).
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Kernel Regression (3)

• No need for structure: x 2 X, an arbitrary set.

• Definition: a kernel is a function K : X⇥ X ! R, such that,

K(x,x0) = h�(x),�(x0)i,

for some � : X ! F, where F is a Hilbert space.

• Hilbert space? Just a complete inner-product vector space.

• Mercer’s theorem: a symmetric function K : X⇥ X ! R is a kernel if
and only any Gram matrix G is positive semi-definite (psd).

• G is psd )
�
�I +G

��1
exists, for � > 0.
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Kernels: Examples

• In this slide, X = Rd

• Linear kernel: K(x,x0) = h(Ax), (Ax0)i; mapping �(x) = Ax.

• Quadratic kernel: K(x,x0) =
�
hx,x0i+A)2;

�(x) = [A,
p
2Ax1,

p
2Ax2, ...

p
2Axd, x

2
1, x1 x2, ...., x1 xd, ..., x

2
d]

(all monomials of degree up to 2, with scaling depending on A)

• Polynomial kernel: K(x,x0) =
�
hx,x0i+A)p;

�(x) = [all monomials of degree up to p, with scaling depending on A]

dim�(x) =

✓
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Kernels: Examples
• In this slide, X = Rd

• Gaussian kernel: K(x,x0) = exp
⇣
�kx�x0k22

2�2

⌘
;

transformation � : Rd ! F, where F has infinite dimension.

�(x) = exp
⇣
�kx� · k22

2�2

⌘

• Illustration for d = 1:

• Why?

h�(x),�(x0)i =
Z

exp
⇣
�kx� uk22

2�2

⌘
exp

⇣
�kx0 � uk22

2�2

⌘
du = exp

⇣
�kx� x0k22

2�2

⌘
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Kernels: Examples

• There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

• Sets: let X = 2S (all subsets of set S, for simplicity, assumed finite).

K\(A,A0) = |A \A0|, forA,A0 2 X

(intersection kernel)

mapping � : X ! F (space of real-valued functions in S)

�(A) = 1A, that is 1A(x) =

⇢
1 ( x 2 A
0 ( x 62 A

h�(A),�(A0)i =
X

x2X
1A(x)1A0(x) =

X

x2A\A0

1 = |A\A0| = K\(A,A
0)

• There are many other kernels for sets.
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Kernels in 2025? Let’s Ask Gemini 2.5 Pro
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Minimum-Norm Linear Regression

• Consider n < p, with X full rank (rank(X) = n)

• LS regression does not have a unique solution:

ŵLS(y) 2 arg min
w2Rp

ky �Xwk22

• Xw = y has infinitely many solutions.

• Minimum-norm (MN) linear regression:

ŵMN(y) = arg min
w: y=Xw

kwk22 = XT (XXT )�1y

• LS and MN: instances of the Moore-Penrose pseudo-inverse.

• Perfect interpolation regime: ŷ = XŵMN(y) = y
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M. Figueiredo (IST) Linear Models LxMLS 2025 52 / 118



Minimum-Norm Linear Regression

• Consider n < p, with X full rank (rank(X) = n)

• LS regression does not have a unique solution:
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Double Descent
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Double Descent (2)
• Random Fourier features: �i(x) = exp(

p
�1hvi,xi), vi ⇠ N(0, I)
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Overparametrization and Double Descent

• “Modern” interpolating regime: more parameters than data points.

• For linear regression with p � n, use minimum norm solution.

• Example w/ �i(x) = max{vT
i x, 0}, where vi are random vectors.

• Current research topic.
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Overparametrization and Double Descent (cont.)
• Polynomial regression: the �i are Legendre polynomials.
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Overparametrization and Double Descent (cont.)
• Polynomial regression: the �i are Legendre polynomials.
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Bayesian View of Ridge Regression

• Linear-Gaussian likelihood (design D): fY |W (y|w) = N(y|Dw,�2I)

• Gaussian prior: fW (w) = N
�
w; 0, I/�

�

• Posterior density:

fW |Y (w|y) = N

⇣
w;

ŵ
ridgez }| {

(DTD + �2�I)�1DTy,�2
�
DTD + �2�I

��1
⌘

• Prediction at new point x⇤ is Y (x⇤) = xT
⇤ W +N (Gaussian)

fY |X(y|x⇤) = N

⇣
xT
⇤ (D

TD + �2�I)�1DTy,�2xT
⇤
�
DTD + �2�I

��1
x⇤ + �2

⌘

=

Z
fY |X,Y (y|x⇤,w,y) fW |Y (w|y) dw

...the variance/uncertainty of the prediction depends on x⇤

• Example in next slide: p = 1, w = [w0, w1]T , wtrue = [�0.3, 0.5]
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Bayesian View of Ridge Regression: Example 1
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Bayesian View of Ridge Regression: Example 2
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Epistemic and Aleatoric Uncertainty

• Law of total variance: var[U ] = EV
⇥
varU [U |V ]

⇤
+ varV

⇥
E[U |V ]

⇤

• Apply with U = Y (x0) and V = w:

var
⇥
Y (x0)

⇤
= EW

⇥
var[Y (x0)|W ]

⇤
| {z }
aleatoric uncertainty

+ varW
⇥
E[Y (x0)|w]

⇤
| {z }
epistemic uncertainty

• Aleatoric uncertainty: expectation of the variability for each w;

• Epistemic uncertainty results from the variability in estimating w.

• For Y (x0) = x0TW +N , with W ⇠ N(µ,C) and N ⇠ N(0,�2),

fY |X(y|x0) = N

⇣
y;µTx0,x0TCx0 + �2

⌘

• Aleatoric: EW
⇥
var[Y (x0)|W ]

⇤
= EW

⇥
�2
⇤
= �2.

• Epistemic: varW
⇥
E[Y (x0)|w]

⇤
= varW

⇥
x0TW

⇤
= x0TCx0
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LASSO regression

• Alternative to ridge regression, with built-in variable selection

ŵlasso = argmin
w

1

2
ky �Xwk22 + � kwk1

where kwk1 =
P

i |wi|, the `1 norm.

• LASSO = least absolute shrinkage and selection operator

• Can be seen as MAP estimate of w, under Laplacian prior

fW (w) =
pY

i=1

�

2
exp
⇣
��|wi|

⌘

=
⇣�
2

⌘p
exp
⇣
��kwk1

⌘
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LASSO versus Ridge

• Example (prostate cancer data)

LASSO Ridge

M. Figueiredo (IST) Linear Models LxMLS 2025 63 / 118



Solving LASSO Regression

• Ridge regression: simply a linear system:

�
XTX + �I

�
ŵridge = XTy

...may capitalize on many decades of work on numerical linear algebra.

• LASSO is much more challenging:

ŵlasso = argmin
w

1

2
ky �Xwk22 + � kwk1

since kwk1 is non-di↵erentiable (for any wi = 0)

• Using gradient descent (e.g., in deep learning), simply pretend that `1
is di↵erentiable (derivative in {�1, 0, 1}), carefully adapt the step size.
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Outline

1 Introduction

2 Regression

3 Classification

4 Optimization for Supervised Learning
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Classification (a.k.a. Pattern Recognition)

• In a nutshell: produce a “machine” that predicts/estimates/guesses a
class y 2 {1, ...,K}, from variables/features x1,...,xp

• Maybe the core machine learning problem, with countless applications.

• Learning/training: given a collection of examples (training data)

D =
�
(x1, y1), ..., (xn, yn)

�

..find the “best” possible machine.
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Generalized Linear Models
• Conditional probability of class y for sample x:

fY |X(y|x) =
exp

⇣
(⌘(y))T�(x)

⌘

PK
u=1 exp

�
(⌘(u))T�(x)

�

• Training data D =
�
(x1, y1), ..., (xn, yn)

�

X Each yi is a sample of Yi ⇠ fY |X(y|xi)

X The samples are conditionally independent
• Parameters ⌘ =

�
⌘(1), ...,⌘(K)

�
, log-likelihood function:

log fY1,...,Yn(y1, ..., yn;x1, ...,xn,⌘) =
nX

i=1

log fY |X(yi|xi,⌘)

=
nX

i=1

KX

y=1

1y=yi log fY |X(y|xi,⌘)

modernly called cross-entropy loss.
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The Binary Case: A Detailed Look

• Binary classification, y 2 {1, 0}, thus

fY |X(1|x) =
exp

⇣
(⌘(1))T�(x)

⌘

exp
⇣
(⌘(1))T�(x)

⌘
+ exp

⇣
(⌘(0))T�(x)

⌘

• Dividing numerator and denominator by exp
�
(⌘(0))T�(x)

�
,

fY |X(1|x) =
exp

�
wT�(x)

�

1 + exp
�
wT�(x)

�

⌘ sigmoid
�
wT�(x)

�

where w = ⌘(1) � ⌘(0).
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Binary Logistic Regression

• Model: fY |X(1|x) = sigmoid
�
wT�(x)

�

• Obviously fY |X(0|x) = 1� fY |X(1|x).
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Binary Logistic Regression

• In two dimensions (w, �(x) 2 R2)

• Classical decision boundary, fY |X(1|x) = 1/2 , wT�(x) = 0,
is linear with respect to �(x).
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Binary Logistic Regression: Log-Likelihood

• fY (y|x) =
 

exp
�
wT�(x)

�

1 + exp
�
wT�(x)

�
!y  

1

1 + exp
�
wT�(x)

�
!(1�y)

• Negative log-likelihood (NLL), given D =
⇣
(x1, y1), ..., (xn, yn)

⌘
,

L(w) = �
nX

i=1

✓
yi log

exp
�
wT�(xi)

�

1 + exp
�
wT�(xi)

� + (1� yi) log
1

1 + exp
�
wT�(xi)

�
◆

=
nX

i=1

✓
log
⇥
1 + exp

�
wT�(xi)

�⇤
� yiw

T�(xi)

◆

• ML estimate ŵML = argmin
w

L(w)

• No closed form! We need optimization algorithms (later)

• L(w) is smooth and convex (should not be too hard to optimize)
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w

L(w)

• No closed form! We need optimization algorithms (later)

• L(w) is smooth and convex (should not be too hard to optimize)

M. Figueiredo (IST) Linear Models LxMLS 2025 71 / 118



Binary Logistic Regression: Log-Likelihood

• fY (y|x) =
 

exp
�
wT�(x)

�

1 + exp
�
wT�(x)

�
!y  

1

1 + exp
�
wT�(x)

�
!(1�y)

• Negative log-likelihood (NLL), given D =
⇣
(x1, y1), ..., (xn, yn)

⌘
,

L(w) = �
nX

i=1

✓
yi log

exp
�
wT�(xi)

�

1 + exp
�
wT�(xi)

� + (1� yi) log
1

1 + exp
�
wT�(xi)

�
◆

=
nX

i=1

✓
log
⇥
1 + exp

�
wT�(xi)

�⇤
� yiw

T�(xi)

◆

• ML estimate ŵML = argmin
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• L(w) is smooth and convex (should not be too hard to optimize)
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Ridge and LASSO Logistic Regression

• Ridge logistic regression:

ŵridge = argmin
w

L(w) +
�

2
kwk22

still smooth and convex.

• Sparse (LASSO) logistic regression:

ŵsparse = argmin
w

L(w) + �kwk1

still convex, but not smooth.
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Multi-class Logistic Regression

• Recall the GLM,

fY |X(y|x,w) =
exp

�
�(x)Tw(y)

�

KX

u=1

exp
�
�(x)Tw(u)

�

... with w = (w(1), ...,w(K)).

• This is called the multinomial/multi-class logistic, a.k.a. maximum
entropy, softmax, ....

• The negative log-likelihood function (cross-entropy loss):

nX

i=1

log fY |X(yi|xi,w) =
nX

i=1

KX

k=1

1yi=k log fY |X(k|xi,⌘),
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Multi-class Logistic Regression (2)

• Using one-hot encoding: yi 2 {0, 1}K , yik = 1 if xi is in class k

• The negative multinomial logistic log-likelihood function

L(w) =
nX

i=1

KX

k=1

yik log fY |X(k|xi,w)

can be written as

L(w) =
nX

i=1


log

✓ KX

k=1

exp(xT
i w

(k))

◆
�
✓ KX

k=1

yik x
T
i w

(k)

◆�

• Notice: if xi is in class k, minimizing L(w) pushes xT
i w

(k) up.
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Bayesian Logistic Regression

• Using some estimate ŵ, obtained from data D, and plugging it into
fY |X(y|x, ŵ) ignores the randomness/uncertainty in ŵ

• Bayesian approach: from a prior fW (w), compute the posterior

fW |Y (w|y) =
fW (w) fY |W (y|w)

fY (y)

where fY |W (y|w) =
QN

i=1 fY |X(yi|xi,w) (recall xi are deterministic)

• Given some new point x⇤, the predictive distribution is

fY |X(y|x⇤,y) =

Z
fW |Y (w|y) fY |X(y|x⇤,w) dw

• Unfortunately, none of these have closed-form expressions.
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• Using some estimate ŵ, obtained from data D, and plugging it into
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• Bayesian approach: from a prior fW (w), compute the posterior

fW |Y (w|y) =
fW (w) fY |W (y|w)

fY (y)

where fY |W (y|w) =
QN

i=1 fY |X(yi|xi,w) (recall xi are deterministic)

• Given some new point x⇤, the predictive distribution is

fY |X(y|x⇤,y) =

Z
fW |Y (w|y) fY |X(y|x⇤,w) dw

• Unfortunately, none of these have closed-form expressions.

M. Figueiredo (IST) Linear Models LxMLS 2025 75 / 118



Bayesian Logistic Regression (2)
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Bayesian Logistic Regression (3)

M. Figueiredo (IST) Linear Models LxMLS 2025 77 / 118



Another View of (and Beyond) Softmax

• Scores: z 2 RK , without constraints/restrictions.

• Probabilities: yk = P[class k|x], thus y 2 �K�1, where

�K�1 =
n
y 2 RK , s.t. y1, ...., yK � 0 and

KX

k=1

yi = 1
o

(simplex)

• How to map from z 2 RK to y 2 �K�1, such that

zi = zj ) yi = yj and zi > zj ) yi � yj
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Argmax and Softmax

• First possibility: probability vector “most aligned” with z:

y = arg max
p2�K�1

pTz =) yk 6= 0 , k 2 argmax
j

{zj , j = 1, ...,K}

called the argmax operator/mapping

.

• Second possibility: encourage more uniform probability distribution:

y = arg max
p2�K�1

pTz +H(p)

) y = softmax(z), i.e. yk / exp(zk)

where H(p) is Shannon’s entropy,

H(p) = �
KX

k=1

pi log pi

• H satisfies: H(p) � 0 and H(p)  logK (attained for pi = 1/K).
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Softmax as Maximum Entropy
• Encouraging high entropy (with weight 1/�):

y = arg max
p2�K�1

� pTz + H(p)

• Add Lagrangian for the simplex constraint:

y = argmax
p

� pTz + H(p) + � (1Tp� 1)

• Taking derivatives (gradient) w.r.t. p1, ..., pK and equating to zero:

� zi � 1� log pi + � = 0

, pi = exp
⇥
� zi + �� 1

⇤
=

e� zi

Z(�,�)

• Choosing � to satisfy the constraint 1Tp = 1 determines Z(�,�)

yi =
e� zi

PK
j=1 e

� zj
=
⇥
softmax(� z)

⇤
i
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Beyond Softmax: Sparsemax

• A third possibility1: simply project z onto �K�1

y = arg min
p2�K�1

kp� zk22 =) y = sparsemax(z)

• It can also be written as

y = arg max
p2�K�1

pTz � 1

2
kpk22

• �kpk22 is (up to a constant) a Tsallis entropy.

• General family, where ⌦ is some entropy,

y = arg max
p2�K�1

� pTz + ⌦(p)

1A. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.
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Argmax, Softmax, and Sparsemax

• All these mappings satisfy: z0 = z + ↵1 ) y0 = y

• They are also permutation equivariant: if R is a permutation,

z0 = R(z) ) y0 = R(y)

• Sparsemax versus softmax:
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Argmax, Softmax, and Sparsemax

• Sparsemax is in-between softmax and argmax

• For z = [1.0716,�1.1221,�0.3288, 0.3368, 0.0425]

softmax(z)

0

0.2

0.4

0.6

0.8

1

sparsemax(z)

0

0.2

0.4

0.6

0.8

1

argmax(z)

0

0.2

0.4

0.6

0.8

1

• Sparsemax, unlike softmax, may yield exact zeros.
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Temperature

• Softmax and sparsemax may include a “temperature” parameter T ,

• Scale the argument by 1/T : softmax(z/T ) and sparsemax(z/T )

• Zero temperature limit:

lim
T!0

softmax(z/T ) = lim
T!0

sparsemax(z/T ) = argmax(z)

• High temperature limit:

lim
T!1

softmax(z/T ) = lim
T!1

sparsemax(z/T ) =
⇣

1
K , ..., 1

K

⌘

• The temperature controls how peaked the softmax is and how sparse
the sparsemax is.
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Classification: The Loss Function Perspective

• Consider binary classifiers of the form ŷ(x) = sign
�
f(x;✓)

�

• In the linear case, f(x;✓) = ✓Tx

• Both logistic regression and SVM can be seen as minimizing a
regularized loss:

✓̂ = argmin
✓

R(✓)| {z }
regularizer

+
1

n

nX

i=1

L(f(xi;✓), yi)| {z }
loss

• Logistic loss: Llogistic(f, y) / log
�
1 + exp(�y f)

�

• Hinge loss: Lhinge(f, y) / max{0, 1� y f}
... underlies support vector machines (SVM)
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�
f(x;✓)

�

• In the linear case, f(x;✓) = ✓Tx

• Both logistic regression and SVM can be seen as minimizing a
regularized loss:

✓̂ = argmin
✓

R(✓)| {z }
regularizer

+
1

n

nX

i=1

L(f(xi;✓), yi)| {z }
loss

• Logistic loss: Llogistic(f, y) / log
�
1 + exp(�y f)

�

• Hinge loss: Lhinge(f, y) / max{0, 1� y f}
... underlies support vector machines (SVM)

M. Figueiredo (IST) Linear Models LxMLS 2025 85 / 118



Classification: The Loss Function Perspective

• Consider binary classifiers of the form ŷ(x) = sign
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�
f(x;✓)

�

• In the linear case, f(x;✓) = ✓Tx

• Both logistic regression and SVM can be seen as minimizing a
regularized loss:

✓̂ = argmin
✓

R(✓)| {z }
regularizer

+
1

n

nX

i=1

L(f(xi;✓), yi)| {z }
loss

• Logistic loss: Llogistic(f, y) / log
�
1 + exp(�y f)

�

• Hinge loss: Lhinge(f, y) / max{0, 1� y f}
... underlies support vector machines (SVM)

M. Figueiredo (IST) Linear Models LxMLS 2025 85 / 118



Classification: The Loss Function Perspective

• Consider binary classifiers of the form ŷ(x) = sign
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Classification: The Loss Function Perspective (2)
• Both the hinge and the logistic loss can be seen as convex
replacements for the error loss (or misclassification loss)

Lerror(f, y) / 1y f<0 =

⇢
1 ( sign(f) 6= y
0 ( sign(f) = y

• Naturally, other losses can be used (binomial deviance = logistic):
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Classification: Empirical and Expected Risk

• The quantity

(empirical risk)

1

n

nX

i=1

L(f(xi;✓), yi)

= Remp[f(·;✓)]

is a sample-based (empirical) estimate of the expected loss (the risk)

E [L(f(X;✓), Y )] = R[f(·;✓)]

• Of course, R[f(·;✓)] cannot be computed: fX,Y is unknown.
Instead, we have training data (x1, y1), ..., (xn, yn) ⇠ fX,Y , i.i.d.

• Logistic regression and SVMs solve regularized ERM problems, with
convex surrogates of the error loss
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Classification: The Loss Function Perspective

• Recall that supervised learning can be formulated as
regularized empirical risk minimization:

✓̂ = argmin
✓

R(✓)| {z }
regularizer

+

empirical risk
z }| {
1

n

nX

i=1

L(f(xi;✓), yi)| {z }
loss

• Quadratic loss: Lquadratic(f, y) / (f � y)2

• Logistic loss: Llogistic(f, y) / log
�
1 + exp(�y f)

�

• Hinge loss: Lhinge(f, y) / max{0, 1� y f}

• Absolute error loss: Labs(f, y) / |f � y| (not covered today)
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Minimizers
• Goal: find ✓⇤, a minimizer of F (✓) with respect to ✓ 2 Rd

• Types of minimizers:

X global, if F (✓⇤)  F (✓), for any ✓ 2 Rd

X local, if F (✓⇤)  F (✓), for any ✓ 2 Rd s.t. k✓ � ✓k  ", for some ".

• Minimizers: global ) local; local ; global.
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Convexity

• F is a convex function if, for all ✓1, ✓2 2 Rd,

� 2 [0, 1] ) F (�✓1 + (1� �)✓2)  �F (✓1) + (1� �)F (✓2)

• F is a strictly convex function if, for all ✓1, ✓2 2 Rd,

� 2 ] 0, 1 [ ) F (�✓1 + (1� �)✓2) < �F (✓1) + (1� �)F (✓2)

• Convexity ) all local minima are global minima.

• Convexity ) continuity.
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Hessian

• For F twice di↵erentiable, the Hessian is

H(✓) = r2F (✓) =

2

666664

@2F
@✓21

@2F
@✓1@✓2

· · · @2F
@✓1@✓d

@2F
@✓2@✓1

@2F
@✓22

· · · @2F
@✓2@✓d

...
...

. . .
...

@2F
@✓d@✓1

@2F
@✓d@✓2

· · · @2F
@✓2d

3

777775
2 Rd⇥d

• F convex , H(✓) ⌫ 0 (positive semi-definite — psd)

• F strictly convex , H(✓) � 0 (positive definite — pd)
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Coercivity
• F is a coercive function if: lim

k✓k!+1
F (✓) = +1

• Let G = argmin
✓

F (✓), the set of global minimizers.

• F is coercive
:
) G 6= ; (example?)

• F is strictly convex
:
) G has at most one element (example?)

• Non-coercivity examples: logistic regression on separable data; linear
regression for n < p.
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Descent Directions
• Definition: ⌘ is a descent direction at ✓0 if

F (✓0 + ↵⌘) < F (✓0), for some ↵ > 0.

• For di↵erentiable F ,

⌘TrF (✓0) < 0 , ⌘ is a descent direction.

• Thus, for di↵erentiable F ,

✓⇤ is a local minimizer
:
) rF (✓⇤) = 0

• If F is convex, ✓⇤ is a global minimizer , rF (✓⇤) = 0
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Gradient Descent

• Key idea: if not at a minimizer, take a step in a descent direction.

• Gradient descent algorithm:

X Start at some initial point ✓0 2 Rd

X For t = 1, 2, ...,

. choose step-size ↵t,

. take a step of size ↵t in the direction of the negative gradient:

✓t = ✓t�1 � ↵trF (✓t�1)

• Several (many) ways to choose ↵t; big research topic.

• Some stopping criterion is used; e.g., krF (✓t)k  �
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Convex Case

• L-smoothness,

krF (✓)�rF (✓0)k2  Lk✓ � ✓0k2

• If F is twice di↵erentiable, L-smoothness , H(✓) � LI.

• µ-strong convexity,

F (✓) � F (✓0) + (✓ � ✓0)TrF (✓0) +
µ

2
k✓ � ✓0k22

• If F is twice di↵erentiable, µ-strong convexity , H(✓) ⌫ µI.

• Condition number  =
L

µ
.
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L-smoothness and µ�Strongly Convex

• L-smooth and µ�strongly convex function: upper and lower bounded
by quadratics.

• Regularization: if F (✓) is convex, F (✓) + µ
2k✓k

2
2 is µ-strongly convex.
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Gradient Descent for Convex Functions
• Gradient descent with step-size ↵ = 1/L,

F (✓t)� F (✓⇤) 
✓
� 1



◆t �
F (✓0)� F (✓⇤)

�

called linear convergence ( �t
�t�1

 � < 1, with �t = F (✓t)� F (✓⇤)).

• If µ = 0 (not strongly convex),

F (✓t)� F (✓⇤)  L

2 t
k✓0 � ✓⇤k22

called sub-linear convergence ( �t
�t�1

! 1)

• In practice, these are very di↵erent (next slide).

• Proofs: see recommended reading (F. Bach).
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Gradient Descent: Strongly Convex Case
• The condition number  expresses the problem di�culty.

• Convergence for di↵erent distributions of eigenvalues.

(pictures from F. Bach).
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Linear vs Sublinear Convergence

• Quadratic ( �t
�2

t�1
! � < 1) and super-linear ( �t

�t�1
! 0)

convergence: not achievable using only gradient information.

• Optimization is a central tool in machine learning; it is a huge field.
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Stochastic Gradient “Descent”
• Back to empirical risk minimization: ✓̂ = argmin

✓
F (✓)

F (✓) =
1

n

nX

i=1

L(f(xi;✓), yi)
�
maybe +R(✓)

�

• For large n, computing rF (✓) is expensive:

rF (✓) =
1

n

nX

i=1

rL(f(xi;✓), yi)

• Alternative: stochastic gradient “descent” (SGD):

X Start at some initial point ✓0 2 Rd

X For t = 1, 2, ...,

. sample i 2 {1, ..., n} at random and choose step-size ↵t,

. take a step of size ↵t in the direction of the negative gradient:

✓t = ✓t�1 � ↵trL(f(xi;✓t�1), yi)
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Stochastic Gradient Descent

• Expected loss (risk): F (✓) = R(✓) = EX,Y [L(f(X;✓), Y )].

• To do gradient descent, we need

rR(✓) = rE[L(f(X;✓), Y )] = E[rL(f(X;✓), Y )]

• Thus, rL(f(X;✓), Y ) is an unbiased estimate of rR(✓)

• SGD with samples from fX,Y is a sequence of random variables,

✓t+1 = ✓t � ↵trL(f(X;✓t), Y )

that is, in expectation,

E[✓t+1] = E[✓t]� ↵tE[rL(f(X;✓t), Y )]

= E[✓t]� ↵trR(✓t)

• In expectation, SGD by sampling fX,Y is gradient descent on R(✓).
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Convergence of Stochastic Gradient Descent

• SGD uses noisy gradients: G(✓), such that E[G(✓)] = rF (✓)

• True for F (✓) = R(✓) and for F (✓) = 1
n

Pn
i=1 L(f(xi;✓), yi).

• Assumptions: F is convex; kG(✓)k22  B2; k✓0 � ✓⇤k2  D.

• Step size: ↵t =
D

B
p
t
.

• Average iterates: ✓̄t =

Pt
s=1 ↵s✓s�1Pt

s=1 ↵s

• Then,

E
⇥
F (✓̄t)� F (✓⇤)

⇤
 DB (2 + log t)

2
p
t

• Important: not practical to compute F (✓t). Selecting the best iterate
is thus impractical and would beat the purpose of SGD.
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Convergence of SGD: Strongly Convex Case

• Regularization: F (✓) =
1

n

nX

i=1

L(f(xi;✓), yi) +
µ

2
k✓k22

• Consequence: F is µ-strongly convex;

• Step size: ↵t =
1

µ t

• Average iterates: ✓̄t =
1

t

tX

s=1

✓s�1

• Then,

E
⇥
F (✓̄t)� F (✓⇤)

⇤
 2B2 (1 + log t)

µ t

• Strong convexity speeds up convergence from O(1/
p
t) to O(1/t)
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Visual Summary

(Picture by Gabriel Peyré)
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Stochastic Gradient Descent: Linear Classification

• Linear predictor with margin loss: L(f(xi;✓t�1), yi) = `(yi✓Txi)

• Several choices (all convex):

X hinge loss (SVM): `(u) = max{0, 1� u}

X logistic loss: `(u) = log(1 + exp(�u))

X squared loss: `(u) = (1� u)2

• From the gradient of the composite function,

r`(yi✓Txi) =
d `(u)

d u

����
u=yi✓Txi

r(yi✓
Txi)

=

 
d `(u)

d u

����
u=yi✓Txi

yi

!
xi

showing that r`(yi✓Txi) is co-linear with xi.

• Each SGD update moves ✓t in a direction parallel to sample xi.
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The Perceptron Algorithm

• Hinge loss: `(u) = max{0, 1� ⌧}, thus

d `(u)

d u
=

⇢
�1, if u  ⌧
0, otherwise.

ignoring the non-di↵erentiability at u = ⌧ .

• Each iteration of SGD, with constant step size ↵, choose sample i,

✓t+1 = ✓t + ↵

⇢
yixi if yi✓T

t xi  ⌧
0, otherwise.

• Points with wrong classification (yi✓T
t xi < 0) or insu�cient margin

(yi✓T
t xi  ⌧) move ✓t towards/away from xi depending on yi

• This is the famous Perceptron algorithm, proposed in 1957 by Frank
Rosenblatt (with ⌧ = 0), the percursor of modern neural networks.
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A Bit of History: The Perceptron
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Perceptron Mistake Bound

• Definitions:

X The training data is linearly separable with margin � > 0 i↵ there is a
weight vector u, with kuk = 1, such that

yn u
Txn � �, 8n.

X Radius of the data: R = max
n

kxnk.

• Then, the following bound of the number of mistakes holds2

Theorem

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

�2 mistakes (non-zero updates).

2A. Noviko↵, “On convergence proofs for perceptrons”, Symposium on the
Mathematical Theory of Automata, 1962.
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Noviko↵’s Theorem: One-Slide Proof
• Recall that non-zero updates (mistakes) are: ✓t+1 = ✓t + yi xi.

• Lower bound on k✓tk, after M mistakes:

uT✓t = uT✓t�1 + yi u
Txi

� uT✓t�1 + �

� uT✓0 +M � = M � (recall ✓0 = 0)

Thus, k✓tk = kuk|{z}
1

k✓tk � uT✓t � M � (Cauchy-Schwarz)

• Upper bound on k✓tk:

k✓tk2 = k✓t�1k2 + kxik2 + 2

0, if mistakez }| {
yi ✓

T
t�1xi

 k✓t�1k2 +R2

 M R2

• Equating both sides, (M�)2  k✓tk2  M R2 ) M  R2/�2 ⌅
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Implicit Regularization
• SGD in linear prediction, with it denoting the sample at iteration t,

✓t = ✓t�1 � ↵t eit xit

where eit depends on the loss gradient and label yit .

• Minibatch or full batch gradient descent:

✓t = ✓t�1 � ↵t

X

j2Bt

ej xj

• Initializing at ✓0 = 0 ) ✓t 2 span(x1, ...,xn).

• If there are multiple ✓⇤ with F (✓⇤) = 0, and the predictions only
depend on ✓Txi, this corresponds to solving

min
✓

k✓k22, such that L(✓Txi, yi) = 0, for i = 1, ..., n.

• This is sometimes called the overparametrized or interpolating regime
and is a central tool in the understanding of modern deep learning.
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Explicit Regularization: Weight Decay

• Objective function F (✓) =
1

n

nX

i=1

L(f(xi;✓), yi) +
�

2
k✓k22

• Let g(✓) be a (batch or stochastic) gradient of the empirical risk

• Gradient of the regularizer: �✓

• Gradient descent (batch or stochastic):

✓t = ✓t�1 � ↵t
�
g(✓t�1) + �✓t�1

�

= (1� �↵t)✓t�1 � ↵t g(✓t�1)

• For ↵t and � small enough, 0 < (1� �↵t) < 1

• ✓t�1 is shrunk/decayed before being updated: weight decay
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Tricks of the Trade
• Choosing the step size is critical: active research area.

• Decay the step size: either continuously, or after each epoch (a single
pass through some set of samples, e.g., the whole training set) .

• Shu✏ing the data after each epoch.

• Minibatching: instead of a single sample, use minibatches (size m)

✓t = ✓t�1 �
↵t

m

X

j 2minibatch t

rL(f(xj ;✓t�1), yj)
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Momentum

• Momentum: remember the previous step, combine it in the update:

✓t = ✓t�1 � ↵tg(✓t�1) + �t(✓t�1 � ✓t�2);

g(✓t) is the gradient estimate (batch, single sample, minibatch).

• Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.
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Adaptive Gradient (AdaGrad)
• AdaGrad3: use separate step sizes for each component of ✓t.

• For component j of ✓t,

Gj,t =
tX

t0=1

�
gj(✓t0)

�2
= Gj,t�1 +

�
gj(✓t)

�2

• Scale the update of each component (" for numerical stability)

✓j,t = ✓j,t�1 �
↵p

Gj,t�1 + "
gj(✓t�1)

• Advantages: robust to choice of ↵; robust to di↵erent parameter
scaling.

• Drawbacks: updated step size (learning rate) vanishes, since
Gj,t � Gj,t�1.

3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011
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Root Mean Square Propagation (RMSProp)

• RMSProp4 addresses the vanishing learning issue.

• For component j of ✓t,

Gj,t = �Gj,t�1 + (1� �)
�
gj(✓t)

�2

• Forgetting factor � (typically 0.9): Gj,t may be smaller than Gj,t�1.

• Scale the update of each component

✓j,t = ✓j,t�1 �
↵p

Gj,t�1 + "
gj(✓t�1)

• Advantages: robust to choice of ↵ (typically 0.01 or 0.001); robust to
di↵erent parameter scaling.

4Presented by G. Hinton in a Coursera lecture.
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Adam Algorithm: Adaptive Moment Estimation
• Adam5: combines aspects of AdaGrad and RMSProp.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical �1 = 0.9,�2 = 0.999,↵ = 10�3):

mt = �1mt�1 + (1� �1)gt

vt = �2vt�1 + (1� �2)g
2
t

m̂t = mt/(1� �t1) (bias correction due to 0 = 0)

v̂t = vt/(1� �t2) (bias correction due to v0 = 0)

✓t+1 = ✓t � ↵
m̂tp
v̂t + ✏

(component-wise)

• Advantages: Computationally e�cient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues and noisy gradient estimates.

5D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220K citations)
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