
Introduction to Deep Learning
a.k.a. “Neural” Networks

Mário A. T. Figueiredo

(based on slides also by André Martins and others)

15th Lisbon Machine Learning Summer School, LxMLS 2025

M. Figueiredo (IST) Deep Learning LxMLS 2025 1 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 2 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 3 / 103



Deep roots

M. Figueiredo (IST) Deep Learning LxMLS 2025 4 / 103



Early work on neural networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 5 / 103



Early machine learning: the Perceptron

M. Figueiredo (IST) Deep Learning LxMLS 2025 6 / 103



Four decades of evolution

M. Figueiredo (IST) Deep Learning LxMLS 2025 7 / 103



End-to-end learning

M. Figueiredo (IST) Deep Learning LxMLS 2025 8 / 103



Deep networks: hierarchy of features

M. Figueiredo (IST) Deep Learning LxMLS 2025 9 / 103



The ImageNet moment

M. Figueiredo (IST) Deep Learning LxMLS 2025 10 / 103



The following years

M. Figueiredo (IST) Deep Learning LxMLS 2025 11 / 103



Also in speech recognition...

M. Figueiredo (IST) Deep Learning LxMLS 2025 12 / 103



... machine translation,

M. Figueiredo (IST) Deep Learning LxMLS 2025 13 / 103



... and biology

M. Figueiredo (IST) Deep Learning LxMLS 2025 14 / 103



Why now? Frictionless reproducibility (Donoho, 2023)

M. Figueiredo (IST) Deep Learning LxMLS 2025 15 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 16 / 103



Neuron model (McCulloch and Pitts, 1943)

• Biological neurons are
hugely more complex.

• Later models replaced
the hard threshold by
more general activation

M. Figueiredo (IST) Deep Learning LxMLS 2025 17 / 103



Neuron model (McCulloch and Pitts, 1943)

• Biological neurons are
hugely more complex.

• Later models replaced
the hard threshold by
more general activation

M. Figueiredo (IST) Deep Learning LxMLS 2025 17 / 103



Neuron model (McCulloch and Pitts, 1943)

• Biological neurons are
hugely more complex.

• Later models replaced
the hard threshold by
more general activation

M. Figueiredo (IST) Deep Learning LxMLS 2025 17 / 103



Artificial neuron
• Pre-activation (input activation):

z(x) = wTx+ b =

D∑
i=1

wixi + b,

w: connection weights
b: bias

• Activation:

h(x) = g(z(x)) = g(wTx+ b),

where g : R→ R is the activation function.

• Typical activation functions (next): linear (identity); sigmoid (logistic
function); hyperbolic tangent (tanh); rectified linear unit (ReLU).

M. Figueiredo (IST) Deep Learning LxMLS 2025 18 / 103



Artificial neuron
• Pre-activation (input activation):

z(x) = wTx+ b =

D∑
i=1

wixi + b,

w: connection weights
b: bias

• Activation:

h(x) = g(z(x)) = g(wTx+ b),

where g : R→ R is the activation function.

• Typical activation functions (next): linear (identity); sigmoid (logistic
function); hyperbolic tangent (tanh); rectified linear unit (ReLU).

M. Figueiredo (IST) Deep Learning LxMLS 2025 18 / 103



Artificial neuron
• Pre-activation (input activation):

z(x) = wTx+ b =

D∑
i=1

wixi + b,

w: connection weights
b: bias

• Activation:

h(x) = g(z(x)) = g(wTx+ b),

where g : R→ R is the activation function.

• Typical activation functions (next): linear (identity); sigmoid (logistic
function); hyperbolic tangent (tanh); rectified linear unit (ReLU).

M. Figueiredo (IST) Deep Learning LxMLS 2025 18 / 103



Linear activation

g(z) = z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• No “squashing” of the input.

• Composing linear layers is equivalent to a single linear layer: no
expressive power increase by using multiple layers (but...).

M. Figueiredo (IST) Deep Learning LxMLS 2025 19 / 103



Sigmoid activation

g(z) = σ(z) =
ez

1 + ez

• Output in [0, 1], can be interpreted as a probability.

• Positive, bounded, strictly increasing.

• Logistic regression corresponds to a network with a single sigmoid unit.

• Combining layers of sigmoid units increases expressiveness (more later).

M. Figueiredo (IST) Deep Learning LxMLS 2025 20 / 103



Hyperbolic tangent activation

g(z) = tanh(z) =
ez − e−z

ez + e−z
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

• “Squashes” the neuron pre-activation to [−1, +1].

• Related to the sigmoid via σ(z) = 1+tanh(z/2)
2 .

• Bounded, strictly increasing.

• Combining layers of tanh units increases expressiveness (more later).

M. Figueiredo (IST) Deep Learning LxMLS 2025 21 / 103



Rectified linear unit

g(z) = relu(z) = max{0, z}

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• Non-negative, increasing, but not upper bounded.

• Not differentiable at 0.

• Leads to neurons with sparse activities (arguably closer to biology).

• Very cheap to compute.

M. Figueiredo (IST) Deep Learning LxMLS 2025 22 / 103



Multi-layer network

• Key idea: use intermediate (hidden) layers between input and output.

• Each hidden layer computes a representation of the input and
propagates it forward.

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Also called feed-forward “neural” network

• Learning the parameters is much harder than in linear models.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 / 103



Multi-layer network

• Key idea: use intermediate (hidden) layers between input and output.

• Each hidden layer computes a representation of the input and
propagates it forward.

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Also called feed-forward “neural” network

• Learning the parameters is much harder than in linear models.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 / 103



Multi-layer network

• Key idea: use intermediate (hidden) layers between input and output.

• Each hidden layer computes a representation of the input and
propagates it forward.

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Also called feed-forward “neural” network

• Learning the parameters is much harder than in linear models.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 / 103



Multi-layer network

• Key idea: use intermediate (hidden) layers between input and output.

• Each hidden layer computes a representation of the input and
propagates it forward.

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Also called feed-forward “neural” network

• Learning the parameters is much harder than in linear models.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 / 103



Multi-layer network

• Key idea: use intermediate (hidden) layers between input and output.

• Each hidden layer computes a representation of the input and
propagates it forward.

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Also called feed-forward “neural” network

• Learning the parameters is much harder than in linear models.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 / 103



Single hidden layer

• Starting simple:

X several inputs (x ∈ RD);

X single output (e.g. y ∈ R or y ∈ [0, 1])

• Intermediate, hidden, layer of K hidden units (h ∈ RK)

M. Figueiredo (IST) Deep Learning LxMLS 2025 24 / 103



Single hidden layer

• Starting simple:

X several inputs (x ∈ RD);

X single output (e.g. y ∈ R or y ∈ [0, 1])

• Intermediate, hidden, layer of K hidden units (h ∈ RK)

M. Figueiredo (IST) Deep Learning LxMLS 2025 24 / 103



Single hidden layer

• Hidden layer pre-activation:

z(x) = W (1)x+ b(1),

with W (1) ∈ RK×D and b(1) ∈ RK .

• Hidden layer activation:

h(x) = g(z(x)),

where g : RK → RK is applied
component-by-component.

• Output layer activation: f(x) = o(h(x)Tw(2) + b(2)), where
w(2) ∈ RK and o : R→ R is the output activation function.

M. Figueiredo (IST) Deep Learning LxMLS 2025 25 / 103



Single hidden layer

• Hidden layer pre-activation:

z(x) = W (1)x+ b(1),

with W (1) ∈ RK×D and b(1) ∈ RK .

• Hidden layer activation:

h(x) = g(z(x)),

where g : RK → RK is applied
component-by-component.

• Output layer activation: f(x) = o(h(x)Tw(2) + b(2)), where
w(2) ∈ RK and o : R→ R is the output activation function.

M. Figueiredo (IST) Deep Learning LxMLS 2025 25 / 103



Single hidden layer

• Hidden layer pre-activation:

z(x) = W (1)x+ b(1),

with W (1) ∈ RK×D and b(1) ∈ RK .

• Hidden layer activation:

h(x) = g(z(x)),

where g : RK → RK is applied
component-by-component.

• Output layer activation: f(x) = o(h(x)Tw(2) + b(2)), where
w(2) ∈ RK and o : R→ R is the output activation function.

M. Figueiredo (IST) Deep Learning LxMLS 2025 25 / 103



Single hidden layer, single output

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = u, for regression (y ∈ R)

X o(u) = σ(u) for binary classification (y ∈ {±1}, f(x) = P(y = 1 | x))

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 26 / 103



Single hidden layer, single output

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = u, for regression (y ∈ R)

X o(u) = σ(u) for binary classification (y ∈ {±1}, f(x) = P(y = 1 | x))

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 26 / 103



Single hidden layer, single output

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = u, for regression (y ∈ R)

X o(u) = σ(u) for binary classification (y ∈ {±1}, f(x) = P(y = 1 | x))

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 26 / 103



Single hidden layer, single output

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = u, for regression (y ∈ R)

X o(u) = σ(u) for binary classification (y ∈ {±1}, f(x) = P(y = 1 | x))

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 26 / 103



Single hidden layer, single output

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = u, for regression (y ∈ R)

X o(u) = σ(u) for binary classification (y ∈ {±1}, f(x) = P(y = 1 | x))

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 26 / 103



Single hidden layer, multiple outputs

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = o, for multiple regression (y ∈ R)

X o(u) = softmax(u) for classification (with C classes)

softmax(u) =

[
exp(u1)∑
c exp(uc)

, . . . ,
exp(uC)∑
c exp(uc)

]
• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 27 / 103



Single hidden layer, multiple outputs

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = o, for multiple regression (y ∈ R)

X o(u) = softmax(u) for classification (with C classes)

softmax(u) =

[
exp(u1)∑
c exp(uc)

, . . . ,
exp(uC)∑
c exp(uc)

]

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 27 / 103



Single hidden layer, multiple outputs

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = o, for multiple regression (y ∈ R)

X o(u) = softmax(u) for classification (with C classes)

softmax(u) =

[
exp(u1)∑
c exp(uc)

, . . . ,
exp(uC)∑
c exp(uc)

]
• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 27 / 103



Single hidden layer, multiple outputs

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = o, for multiple regression (y ∈ R)

X o(u) = softmax(u) for classification (with C classes)

softmax(u) =

[
exp(u1)∑
c exp(uc)

, . . . ,
exp(uC)∑
c exp(uc)

]
• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 27 / 103



Multiple (L ≥ 1) hidden layers

• Hidden layer pre-activation (define
h(0) = x for convenience):

z(`)(x) = W (`)h(`−1)(x) + b(`),

with W (`) ∈ RK`×K`−1 ; b(`) ∈ RK`

• Hidden layer activation:

h(`)(x) = g
(
z(`)(x)

)
• Output layer activation:

f(x) = o(z(L+1)(x)) = o(W (L+1)h(L)(x) + b(L+1)).

M. Figueiredo (IST) Deep Learning LxMLS 2025 28 / 103



Multiple (L ≥ 1) hidden layers

• Hidden layer pre-activation (define
h(0) = x for convenience):

z(`)(x) = W (`)h(`−1)(x) + b(`),

with W (`) ∈ RK`×K`−1 ; b(`) ∈ RK`

• Hidden layer activation:

h(`)(x) = g
(
z(`)(x)

)

• Output layer activation:

f(x) = o(z(L+1)(x)) = o(W (L+1)h(L)(x) + b(L+1)).

M. Figueiredo (IST) Deep Learning LxMLS 2025 28 / 103



Multiple (L ≥ 1) hidden layers

• Hidden layer pre-activation (define
h(0) = x for convenience):

z(`)(x) = W (`)h(`−1)(x) + b(`),

with W (`) ∈ RK`×K`−1 ; b(`) ∈ RK`

• Hidden layer activation:

h(`)(x) = g
(
z(`)(x)

)
• Output layer activation:

f(x) = o(z(L+1)(x)) = o(W (L+1)h(L)(x) + b(L+1)).

M. Figueiredo (IST) Deep Learning LxMLS 2025 28 / 103



Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

• First proved for the sigmoid case by Cybenko (1989);

• Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

• Caveat: may need exponentially many hidden units.

M. Figueiredo (IST) Deep Learning LxMLS 2025 29 / 103



Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

• First proved for the sigmoid case by Cybenko (1989);

• Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

• Caveat: may need exponentially many hidden units.

M. Figueiredo (IST) Deep Learning LxMLS 2025 29 / 103



Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

• First proved for the sigmoid case by Cybenko (1989);

• Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

• Caveat: may need exponentially many hidden units.

M. Figueiredo (IST) Deep Learning LxMLS 2025 29 / 103



Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

• First proved for the sigmoid case by Cybenko (1989);

• Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

• Caveat: may need exponentially many hidden units.

M. Figueiredo (IST) Deep Learning LxMLS 2025 29 / 103



Universal approximation: illustration

M. Figueiredo (IST) Deep Learning LxMLS 2025 30 / 103



Deeper networks

• Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

O

((
K
D

)D(L−1)
KD

)

• For fixed K, deeper networks are exponentially more expressive.

• Proved by Montufar, Pascanu, Cho, and Bengio (2014).

M. Figueiredo (IST) Deep Learning LxMLS 2025 31 / 103



Deeper networks

• Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

O

((
K
D

)D(L−1)
KD

)

• For fixed K, deeper networks are exponentially more expressive.

• Proved by Montufar, Pascanu, Cho, and Bengio (2014).

M. Figueiredo (IST) Deep Learning LxMLS 2025 31 / 103



Deeper networks

• Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

O

((
K
D

)D(L−1)
KD

)

• For fixed K, deeper networks are exponentially more expressive.

• Proved by Montufar, Pascanu, Cho, and Bengio (2014).

M. Figueiredo (IST) Deep Learning LxMLS 2025 31 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 32 / 103



Empirical risk minimization

• Training/learning: choose parameters θ := {(W (`), b(`))}L+1
`=1 by

minimizing the empirical risk, maybe plus a regularizer:

L(θ) =
1

n

n∑
i=1

L(f(xi;θ), yi) + λΩ(θ)

X {(xi, yi), i = 1, ..., n} is a training set

X L(f(xi;θ), yi) is a loss function

X Ω(θ) is a regularizer

X λ is the regularization constant (hyperparameter to be tuned)

M. Figueiredo (IST) Deep Learning LxMLS 2025 33 / 103



Empirical risk minimization

• Training/learning: choose parameters θ := {(W (`), b(`))}L+1
`=1 by

minimizing the empirical risk, maybe plus a regularizer:

L(θ) =
1

n

n∑
i=1

L(f(xi;θ), yi) + λΩ(θ)

X {(xi, yi), i = 1, ..., n} is a training set

X L(f(xi;θ), yi) is a loss function

X Ω(θ) is a regularizer

X λ is the regularization constant (hyperparameter to be tuned)

M. Figueiredo (IST) Deep Learning LxMLS 2025 33 / 103



Empirical risk minimization

• Training/learning: choose parameters θ := {(W (`), b(`))}L+1
`=1 by

minimizing the empirical risk, maybe plus a regularizer:

L(θ) =
1

n

n∑
i=1

L(f(xi;θ), yi) + λΩ(θ)

X {(xi, yi), i = 1, ..., n} is a training set

X L(f(xi;θ), yi) is a loss function

X Ω(θ) is a regularizer

X λ is the regularization constant (hyperparameter to be tuned)

M. Figueiredo (IST) Deep Learning LxMLS 2025 33 / 103



Empirical risk minimization

• Training/learning: choose parameters θ := {(W (`), b(`))}L+1
`=1 by

minimizing the empirical risk, maybe plus a regularizer:

L(θ) =
1

n

n∑
i=1

L(f(xi;θ), yi) + λΩ(θ)

X {(xi, yi), i = 1, ..., n} is a training set

X L(f(xi;θ), yi) is a loss function

X Ω(θ) is a regularizer

X λ is the regularization constant (hyperparameter to be tuned)

M. Figueiredo (IST) Deep Learning LxMLS 2025 33 / 103



Empirical risk minimization

• Training/learning: choose parameters θ := {(W (`), b(`))}L+1
`=1 by

minimizing the empirical risk, maybe plus a regularizer:

L(θ) =
1

n

n∑
i=1

L(f(xi;θ), yi) + λΩ(θ)

X {(xi, yi), i = 1, ..., n} is a training set

X L(f(xi;θ), yi) is a loss function

X Ω(θ) is a regularizer

X λ is the regularization constant (hyperparameter to be tuned)

M. Figueiredo (IST) Deep Learning LxMLS 2025 33 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 34 / 103



Gradient Descent

• Gradient descent algorithm:

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(θt−1)

• Several (many) ways to choose αt;

• Some stopping criterion is used; e.g., ‖∇θL(θt)‖ ≤ δ.

M. Figueiredo (IST) Deep Learning LxMLS 2025 35 / 103



Gradient Descent

• Gradient descent algorithm:

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(θt−1)

• Several (many) ways to choose αt;

• Some stopping criterion is used; e.g., ‖∇θL(θt)‖ ≤ δ.

M. Figueiredo (IST) Deep Learning LxMLS 2025 35 / 103



Gradient Descent

• Gradient descent algorithm:

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(θt−1)

• Several (many) ways to choose αt;

• Some stopping criterion is used; e.g., ‖∇θL(θt)‖ ≤ δ.

M. Figueiredo (IST) Deep Learning LxMLS 2025 35 / 103



Gradient Descent

• Gradient descent algorithm:

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(θt−1)

• Several (many) ways to choose αt;

• Some stopping criterion is used; e.g., ‖∇θL(θt)‖ ≤ δ.

M. Figueiredo (IST) Deep Learning LxMLS 2025 35 / 103



Gradient descent

• The empirical risk minimization (ERM) objective function:

L(θ) = λΩ(θ) +
1

n

n∑
i=1

L(f(xi;θ), yi)

=
1

n

n∑
i=1

λΩ(θ) + L(f(xi;θ), yi)︸ ︷︷ ︸
Li(θ)

=
1

n

n∑
i=1

Li(θ)

• The gradient:

∇θL(θ) :=
1

n

n∑
i=1

∇θLi(θ)

• Requires a full pass over the data to update the weights: too slow!

M. Figueiredo (IST) Deep Learning LxMLS 2025 36 / 103



Gradient descent

• The empirical risk minimization (ERM) objective function:

L(θ) = λΩ(θ) +
1

n

n∑
i=1

L(f(xi;θ), yi)

=
1

n

n∑
i=1

λΩ(θ) + L(f(xi;θ), yi)︸ ︷︷ ︸
Li(θ)

=
1

n

n∑
i=1

Li(θ)

• The gradient:

∇θL(θ) :=
1

n

n∑
i=1

∇θLi(θ)

• Requires a full pass over the data to update the weights: too slow!

M. Figueiredo (IST) Deep Learning LxMLS 2025 36 / 103



Gradient descent

• The empirical risk minimization (ERM) objective function:

L(θ) = λΩ(θ) +
1

n

n∑
i=1

L(f(xi;θ), yi)

=
1

n

n∑
i=1

λΩ(θ) + L(f(xi;θ), yi)︸ ︷︷ ︸
Li(θ)

=
1

n

n∑
i=1

Li(θ)

• The gradient:

∇θL(θ) :=
1

n

n∑
i=1

∇θLi(θ)

• Requires a full pass over the data to update the weights: too slow!

M. Figueiredo (IST) Deep Learning LxMLS 2025 36 / 103



Gradient descent

• The empirical risk minimization (ERM) objective function:

L(θ) = λΩ(θ) +
1

n

n∑
i=1

L(f(xi;θ), yi)

=
1

n

n∑
i=1

λΩ(θ) + L(f(xi;θ), yi)︸ ︷︷ ︸
Li(θ)

=
1

n

n∑
i=1

Li(θ)

• The gradient:

∇θL(θ) :=
1

n

n∑
i=1

∇θLi(θ)

• Requires a full pass over the data to update the weights: too slow!

M. Figueiredo (IST) Deep Learning LxMLS 2025 36 / 103



Stochastic gradient descent (SGD)

• Sample one gradient ∇θLi(θ) uniformly at random: j ∈ {1, ..., n}

• This an unbiased estimate of the gradient,

Ej [∇θLj(θ)] =
1

n

n∑
i=1

∇θLi(θ) = ∇θL(θ)

but may be a noisy (high variance) one.

• Stochastic gradient “descent” (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample i ∈ {1, ..., n} at random and choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(f(xi;θt−1), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 37 / 103



Stochastic gradient descent (SGD)

• Sample one gradient ∇θLi(θ) uniformly at random: j ∈ {1, ..., n}

• This an unbiased estimate of the gradient,

Ej [∇θLj(θ)] =
1

n

n∑
i=1

∇θLi(θ) = ∇θL(θ)

but may be a noisy (high variance) one.

• Stochastic gradient “descent” (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample i ∈ {1, ..., n} at random and choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(f(xi;θt−1), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 37 / 103



Stochastic gradient descent (SGD)

• Sample one gradient ∇θLi(θ) uniformly at random: j ∈ {1, ..., n}

• This an unbiased estimate of the gradient,

Ej [∇θLj(θ)] =
1

n

n∑
i=1

∇θLi(θ) = ∇θL(θ)

but may be a noisy (high variance) one.

• Stochastic gradient “descent” (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample i ∈ {1, ..., n} at random and choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(f(xi;θt−1), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 37 / 103



Visual summary

(Picture by Gabriel Peyré)

M. Figueiredo (IST) Deep Learning LxMLS 2025 38 / 103



SGD with mini-batches
• Instead of a single sample, use a mini-batch {j1, . . . , jB} (B � n)

• Mini-batch SGD (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample {j1, ...jB} ⊂ {1, ..., n}; choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt
1

B

B∑

i=1

∇θL(f(xji ;θt−1), yji)

• Less noisy, still unbiased
gradient estimate.

M. Figueiredo (IST) Deep Learning LxMLS 2025 39 / 103



SGD with mini-batches
• Instead of a single sample, use a mini-batch {j1, . . . , jB} (B � n)

• Mini-batch SGD (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample {j1, ...jB} ⊂ {1, ..., n}; choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt
1

B

B∑

i=1

∇θL(f(xji ;θt−1), yji)

• Less noisy, still unbiased
gradient estimate.

M. Figueiredo (IST) Deep Learning LxMLS 2025 39 / 103



SGD with mini-batches
• Instead of a single sample, use a mini-batch {j1, . . . , jB} (B � n)

• Mini-batch SGD (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample {j1, ...jB} ⊂ {1, ..., n}; choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt
1

B

B∑

i=1

∇θL(f(xji ;θt−1), yji)

• Less noisy, still unbiased
gradient estimate.

M. Figueiredo (IST) Deep Learning LxMLS 2025 39 / 103



The key Ingredients of SGD

• The loss function L(f(xi;θ), yi);

• A procedure for computing its gradient ∇θL(f(xi;θ), yi);

• The regularizer Ω(θ);

• ... its gradients, ∇θΩ(θ)

Let’s see them one at the time...

M. Figueiredo (IST) Deep Learning LxMLS 2025 40 / 103



The key Ingredients of SGD

• The loss function L(f(xi;θ), yi);

• A procedure for computing its gradient ∇θL(f(xi;θ), yi);

• The regularizer Ω(θ);

• ... its gradients, ∇θΩ(θ)

Let’s see them one at the time...

M. Figueiredo (IST) Deep Learning LxMLS 2025 40 / 103



Squared error loss

• The common choice for regression/reconstruction problems

• The goal is to have ŷ = f(x;θ) ≈ y

• Squared error loss:

L(ŷ,y) =
1

2
‖ŷ − y‖2

• Loss gradient:

∂L(ŷ,y)

∂ŷj
= ŷj − yj ⇒ ∇ŷ L(ŷ,y) = ŷ − y

• Notice: this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 41 / 103



Squared error loss

• The common choice for regression/reconstruction problems

• The goal is to have ŷ = f(x;θ) ≈ y

• Squared error loss:

L(ŷ,y) =
1

2
‖ŷ − y‖2

• Loss gradient:

∂L(ŷ,y)

∂ŷj
= ŷj − yj ⇒ ∇ŷ L(ŷ,y) = ŷ − y

• Notice: this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 41 / 103



Squared error loss

• The common choice for regression/reconstruction problems

• The goal is to have ŷ = f(x;θ) ≈ y

• Squared error loss:

L(ŷ,y) =
1

2
‖ŷ − y‖2

• Loss gradient:

∂L(ŷ,y)

∂ŷj
= ŷj − yj ⇒ ∇ŷ L(ŷ,y) = ŷ − y

• Notice: this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 41 / 103



Squared error loss

• The common choice for regression/reconstruction problems

• The goal is to have ŷ = f(x;θ) ≈ y

• Squared error loss:

L(ŷ,y) =
1

2
‖ŷ − y‖2

• Loss gradient:

∂L(ŷ,y)

∂ŷj
= ŷj − yj ⇒ ∇ŷ L(ŷ,y) = ŷ − y

• Notice: this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 41 / 103



Squared error loss

• The common choice for regression/reconstruction problems

• The goal is to have ŷ = f(x;θ) ≈ y

• Squared error loss:

L(ŷ,y) =
1

2
‖ŷ − y‖2

• Loss gradient:

∂L(ŷ,y)

∂ŷj
= ŷj − yj ⇒ ∇ŷ L(ŷ,y) = ŷ − y

• Notice: this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 41 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ)

= − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ)

= − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ)

= − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ) = − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ) = − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ) = − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ) = − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ) = − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y; ∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ) = − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y; ∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42 / 103



The Key Ingredients of SGD

• The loss function L(f(xi;θ), yi); X

• A procedure for computing its gradient ∇θL(f(xi;θ), yi); next

• The regularizer Ω(θ);

• ... its gradients, ∇θΩ(θ)

M. Figueiredo (IST) Deep Learning LxMLS 2025 43 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 44 / 103



Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
= ?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45 / 103



Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
=

?
∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45 / 103



Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
=

?
∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45 / 103



Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
=

?
∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45 / 103



Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
=

?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t

= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45 / 103



Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
=

?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45 / 103



Hidden layer gradient

• Recap: z(`+1) = W (`+1)h(`) + b(`+1)

∂L(f(x;θ), y)

∂h
(`)
j

=
∑
i

∂L(f(x;θ), y)

∂z
(`+1)
i

∂z
(`+1)
i

∂h
(`)
j

=
∑
i

∂L(f(x;θ), y)

∂z
(`+1)
i

W
(`+1)
i,j

• Hence

∇h(`)L(f(x;θ), y) = W (`+1)>∇z(`+1)L(f(x;θ), y).

M. Figueiredo (IST) Deep Learning LxMLS 2025 46 / 103



Hidden layer gradient

• Recap: z(`+1) = W (`+1)h(`) + b(`+1)

∂L(f(x;θ), y)

∂h
(`)
j

=
∑
i

∂L(f(x;θ), y)

∂z
(`+1)
i

∂z
(`+1)
i

∂h
(`)
j

=
∑
i

∂L(f(x;θ), y)

∂z
(`+1)
i

W
(`+1)
i,j

• Hence

∇h(`)L(f(x;θ), y) = W (`+1)>∇z(`+1)L(f(x;θ), y).

M. Figueiredo (IST) Deep Learning LxMLS 2025 46 / 103



Hidden layer gradient (before activation)

• Recap: h
(`)
j = g(z

(`)
j ), where g : R→ R is the activation function.

∂L(f(x;θ), y)

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

g′(z
(`)
j )

• Hence ∇z(`)L(f(x;θ), y) = ∇h(`)L(f(x;θ), y)� g′(z(`)).

• What are the activation function derivatives g′(z(`))?

M. Figueiredo (IST) Deep Learning LxMLS 2025 47 / 103



Hidden layer gradient (before activation)

• Recap: h
(`)
j = g(z

(`)
j ), where g : R→ R is the activation function.

∂L(f(x;θ), y)

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

g′(z
(`)
j )

• Hence ∇z(`)L(f(x;θ), y) = ∇h(`)L(f(x;θ), y)� g′(z(`)).

• What are the activation function derivatives g′(z(`))?

M. Figueiredo (IST) Deep Learning LxMLS 2025 47 / 103



Hidden layer gradient (before activation)

• Recap: h
(`)
j = g(z

(`)
j ), where g : R→ R is the activation function.

∂L(f(x;θ), y)

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

g′(z
(`)
j )

• Hence ∇z(`)L(f(x;θ), y) = ∇h(`)L(f(x;θ), y)� g′(z(`)).

• What are the activation function derivatives g′(z(`))?

M. Figueiredo (IST) Deep Learning LxMLS 2025 47 / 103



Linear activation

g(z) = z

Derivative:

g′(z) = 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

M. Figueiredo (IST) Deep Learning LxMLS 2025 48 / 103



Sigmoid activation

g(z) = σ(z) =
1

1 + e−z

Derivative:

g′(z) = g(z)(1− g(z))

-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

M. Figueiredo (IST) Deep Learning LxMLS 2025 49 / 103



Hyperbolic tangent activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

Derivative:

g′(z) = 1− g(z)2 = sech2(x)
-3 -2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

M. Figueiredo (IST) Deep Learning LxMLS 2025 50 / 103



Rectified linear unit activation

g(z) = relu(z) = max{0, z}

Derivative (except for z = 0):

g′(z) = 1z>0

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

M. Figueiredo (IST) Deep Learning LxMLS 2025 51 / 103



Parameter gradient

• Recap: z(`) = W (`)h(`−1) + b(`).

∂L(f(x;θ), y)

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

h
(`−1)
j

• Hence ∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)h(`−1)>

• Similarly, ∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 52 / 103



Parameter gradient

• Recap: z(`) = W (`)h(`−1) + b(`).

∂L(f(x;θ), y)

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

h
(`−1)
j

• Hence ∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)h(`−1)>

• Similarly, ∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 52 / 103



Parameter gradient

• Recap: z(`) = W (`)h(`−1) + b(`).

∂L(f(x;θ), y)

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

h
(`−1)
j

• Hence ∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)h(`−1)>

• Similarly, ∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 52 / 103



Backpropagation

Compute output gradient (before activation):

∇z(L+1)L(f(x;θ), y) = f(x)− 1y

for ` from L+ 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y) h(`−1)>

∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f(x;θ), y) = W (`)>∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f(x;θ), y) = ∇h(`−1)L(f(x;θ), y)� g′(z(`−1))

end for

M. Figueiredo (IST) Deep Learning LxMLS 2025 53 / 103



The computation graph view

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 / 103



The computation graph view

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 / 103



The computation graph view

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 / 103



The computation graph view

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 / 103



Automatic differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

M. Figueiredo (IST) Deep Learning LxMLS 2025 55 / 103



Automatic differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

M. Figueiredo (IST) Deep Learning LxMLS 2025 55 / 103



Automatic differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

M. Figueiredo (IST) Deep Learning LxMLS 2025 55 / 103



Automatic differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

M. Figueiredo (IST) Deep Learning LxMLS 2025 55 / 103



Many software toolkits for deep learning

• Tensorflow

• Torch

• Pytorch

• MXNet

• Keras

• JAX

• ...

All implement automatic differentiation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 56 / 103



The key ingredients of SGD

• The loss function L(f(xi;θ), yi); X

• A procedure for computing its gradient ∇θL(f(xi;θ), yi); X

• The regularizer Ω(θ); next

• ... its gradients, ∇θΩ(θ). next

M. Figueiredo (IST) Deep Learning LxMLS 2025 57 / 103



Regularization

• Objective function to be minimized:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f(xi;θ), yi)

• We will next focus on the regularizer and its gradient

• We will study:

X `2 regularization (weight decay);

X `1 regularization (LASSO-type);

X dropout regularization, which doesn’t have the form above.

M. Figueiredo (IST) Deep Learning LxMLS 2025 58 / 103



Regularization

• Objective function to be minimized:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f(xi;θ), yi)

• We will next focus on the regularizer and its gradient

• We will study:

X `2 regularization (weight decay);

X `1 regularization (LASSO-type);

X dropout regularization, which doesn’t have the form above.

M. Figueiredo (IST) Deep Learning LxMLS 2025 58 / 103



`2 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖22

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect

W (`) ← W (`) − η∇W (`)Li(θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f(xi;θ), yi))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f(xi;θ), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 / 103



`2 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖22

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect

W (`) ← W (`) − η∇W (`)Li(θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f(xi;θ), yi))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f(xi;θ), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 / 103



`2 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖22

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect

W (`) ← W (`) − η∇W (`)Li(θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f(xi;θ), yi))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f(xi;θ), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 / 103



`2 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖22

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect

W (`) ← W (`) − η∇W (`)Li(θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f(xi;θ), yi))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f(xi;θ), yi)

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 / 103



`1 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 / 103



`1 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 / 103



`1 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 / 103



`1 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 / 103



Dropout regularization

During training, remove some hidden units, chosen at random

Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014).

M. Figueiredo (IST) Deep Learning LxMLS 2025 61 / 103



Dropout regularization

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

• Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

• Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1− p

• This ensures that the expected value of the output remains the same
during training and inference.

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 / 103



Dropout regularization

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

• Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

• Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1− p

• This ensures that the expected value of the output remains the same
during training and inference.

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 / 103



Dropout regularization

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

• Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

• Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1− p

• This ensures that the expected value of the output remains the same
during training and inference.

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 / 103



Dropout regularization

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

• Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

• Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1− p

• This ensures that the expected value of the output remains the same
during training and inference.

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 / 103



Backpropagation with dropout

Compute output gradient (before activation):

∇z(L+1)L(f(x;θ), y) = −(1y − f(x))

for ` from L+ 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y) h(`−1)>︸ ︷︷ ︸
includes mask m(`−1)

∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f(x;θ), y) = W (`)>∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f(x;θ), y) = ∇h(`−1)L(f(x;θ), y)� g′(z(`−1))�m(`−1)

end for

M. Figueiredo (IST) Deep Learning LxMLS 2025 63 / 103



Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 / 103



Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 / 103



Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 / 103



Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 / 103



Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 / 103



Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 / 103



More tricks of the trade

• Hyperparameter tuning (just use Optuna)

• Normalization of the data

• Decaying the learning rate

• Mini-batches size

• Adaptive learning rates

• Gradient checking

• Debug on small datasets

M. Figueiredo (IST) Deep Learning LxMLS 2025 65 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 66 / 103



Momentum

• Momentum: remember the previous step, combine it in the update:

θt = θt−1 − αtg(θt−1) + γt(θt−1 − θt−2);

g(θt) is the gradient estimate (batch, single sample, minibatch).

• Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.

M. Figueiredo (IST) Deep Learning LxMLS 2025 67 / 103



Momentum

• Momentum: remember the previous step, combine it in the update:

θt = θt−1 − αtg(θt−1) + γt(θt−1 − θt−2);

g(θt) is the gradient estimate (batch, single sample, minibatch).

• Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.

M. Figueiredo (IST) Deep Learning LxMLS 2025 67 / 103



Adaptive gradient (AdaGrad)

• AdaGrad1: use separate step sizes for each component θj,t of θt.

• Scale the update of each component (ε for numerical stability)

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• where Gj,t accumulates all the squared gradient values in component t

Gj,t =

t∑
t′=1

(
gj(θt′)

)2
= Gj,t−1 +

(
gj(θt)

)2
• Advantages: robust to choice of α and to different parameter scaling.

• Drawbacks: step size vanishes, because Gj,t ≥ Gj,t−1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 / 103



Adaptive gradient (AdaGrad)

• AdaGrad1: use separate step sizes for each component θj,t of θt.

• Scale the update of each component (ε for numerical stability)

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• where Gj,t accumulates all the squared gradient values in component t

Gj,t =

t∑
t′=1

(
gj(θt′)

)2
= Gj,t−1 +

(
gj(θt)

)2
• Advantages: robust to choice of α and to different parameter scaling.

• Drawbacks: step size vanishes, because Gj,t ≥ Gj,t−1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 / 103



Adaptive gradient (AdaGrad)

• AdaGrad1: use separate step sizes for each component θj,t of θt.

• Scale the update of each component (ε for numerical stability)

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• where Gj,t accumulates all the squared gradient values in component t

Gj,t =

t∑
t′=1

(
gj(θt′)

)2
= Gj,t−1 +

(
gj(θt)

)2

• Advantages: robust to choice of α and to different parameter scaling.

• Drawbacks: step size vanishes, because Gj,t ≥ Gj,t−1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 / 103



Adaptive gradient (AdaGrad)

• AdaGrad1: use separate step sizes for each component θj,t of θt.

• Scale the update of each component (ε for numerical stability)

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• where Gj,t accumulates all the squared gradient values in component t

Gj,t =

t∑
t′=1

(
gj(θt′)

)2
= Gj,t−1 +

(
gj(θt)

)2
• Advantages: robust to choice of α and to different parameter scaling.

• Drawbacks: step size vanishes, because Gj,t ≥ Gj,t−1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 / 103



Adaptive gradient (AdaGrad)

• AdaGrad1: use separate step sizes for each component θj,t of θt.

• Scale the update of each component (ε for numerical stability)

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• where Gj,t accumulates all the squared gradient values in component t

Gj,t =

t∑
t′=1

(
gj(θt′)

)2
= Gj,t−1 +

(
gj(θt)

)2
• Advantages: robust to choice of α and to different parameter scaling.

• Drawbacks: step size vanishes, because Gj,t ≥ Gj,t−1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2

• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Adam: adaptive momentum estimation

• Adam3: combines aspects of RMSProp and momentum.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical β1 = 0.9, β2 = 0.999, α = 10−3):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1) (bias correction due to m0 = 0)

v̂t = vt/(1− βt2) (bias correction due to v0 = 0)

θt+1 = θt − α
m̂t√
v̂t + ε

(component-wise)

• Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues with noisy gradient estimates.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70 / 103



Adam: adaptive momentum estimation

• Adam3: combines aspects of RMSProp and momentum.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical β1 = 0.9, β2 = 0.999, α = 10−3):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1) (bias correction due to m0 = 0)

v̂t = vt/(1− βt2) (bias correction due to v0 = 0)

θt+1 = θt − α
m̂t√
v̂t + ε

(component-wise)

• Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues with noisy gradient estimates.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70 / 103



Adam: adaptive momentum estimation

• Adam3: combines aspects of RMSProp and momentum.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical β1 = 0.9, β2 = 0.999, α = 10−3):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1) (bias correction due to m0 = 0)

v̂t = vt/(1− βt2) (bias correction due to v0 = 0)

θt+1 = θt − α
m̂t√
v̂t + ε

(component-wise)

• Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues with noisy gradient estimates.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70 / 103



Adam: adaptive momentum estimation

• Adam3: combines aspects of RMSProp and momentum.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical β1 = 0.9, β2 = 0.999, α = 10−3):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1) (bias correction due to m0 = 0)

v̂t = vt/(1− βt2) (bias correction due to v0 = 0)

θt+1 = θt − α
m̂t√
v̂t + ε

(component-wise)

• Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues with noisy gradient estimates.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70 / 103



Adam: adaptive momentum estimation

• Adam3: combines aspects of RMSProp and momentum.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical β1 = 0.9, β2 = 0.999, α = 10−3):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1) (bias correction due to m0 = 0)

v̂t = vt/(1− βt2) (bias correction due to v0 = 0)

θt+1 = θt − α
m̂t√
v̂t + ε

(component-wise)

• Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues with noisy gradient estimates.
3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International

Conference for Learning Representations, 2015. (more than 220000 citations)
M. Figueiredo (IST) Deep Learning LxMLS 2025 70 / 103



Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 71 / 103



Convolutional networks (CNN)

• How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

• Convolutional networks have convolutional layers

• How are they different from a fully connected layers?

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 / 103



Convolutional networks (CNN)

• How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

• Convolutional networks have convolutional layers

• How are they different from a fully connected layers?

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 / 103



Convolutional networks (CNN)

• How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

• Convolutional networks have convolutional layers

• How are they different from a fully connected layers?

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 / 103



Convolutional networks (CNN)

• How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

• Convolutional networks have convolutional layers

• How are they different from a fully connected layers?

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 / 103



Neocognitron (Fukushima, 1982)

• Inspired by the multi-stage hierarchy of the visual nervous system
(Hubel and Wiesel, 1965).

M. Figueiredo (IST) Deep Learning LxMLS 2025 73 / 103



ConvNet (LeNet-5) (LeCun, 1998)

M. Figueiredo (IST) Deep Learning LxMLS 2025 74 / 103



Fully connected layer

(Credits: Fei-Fei Li, Johnson, Yeung)

• All activations depend on all inputs.

M. Figueiredo (IST) Deep Learning LxMLS 2025 75 / 103



Convolutional layer

• Don’t stretch/reshape: preserve the spacial structure!

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 76 / 103



Convolutional layer

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 77 / 103



Convolutional layer

• Apply the same filter to all spatial locations (28x28 times, why?):

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 78 / 103



Convolutional layer

• For example, 6 5x5x3 filters yield 6 activation maps:

(Credits: Fei-Fei Li, Johnson, Yeung)

• Stack these up to get a new “image” of size 28x28x6!

M. Figueiredo (IST) Deep Learning LxMLS 2025 79 / 103



Image size, filter size, stride, channels

• Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

• Number of channels: number of filters used in each layer.

• Given an N ×N ×D image, F × F ×D filters, K channels, and
stride S, the resulting output will be of size M ×M ×K, where

M = (N − F )/S + 1
• Examples:

X N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output
X N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

• Padding: append zeros around the images. Common padding size:
(F − 1)/2, which preserves spatial size: M = N .

M. Figueiredo (IST) Deep Learning LxMLS 2025 80 / 103



Image size, filter size, stride, channels

• Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

• Number of channels: number of filters used in each layer.

• Given an N ×N ×D image, F × F ×D filters, K channels, and
stride S, the resulting output will be of size M ×M ×K, where

M = (N − F )/S + 1
• Examples:

X N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output
X N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

• Padding: append zeros around the images. Common padding size:
(F − 1)/2, which preserves spatial size: M = N .

M. Figueiredo (IST) Deep Learning LxMLS 2025 80 / 103



Image size, filter size, stride, channels

• Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

• Number of channels: number of filters used in each layer.

• Given an N ×N ×D image, F × F ×D filters, K channels, and
stride S, the resulting output will be of size M ×M ×K, where

M = (N − F )/S + 1

• Examples:

X N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output
X N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

• Padding: append zeros around the images. Common padding size:
(F − 1)/2, which preserves spatial size: M = N .

M. Figueiredo (IST) Deep Learning LxMLS 2025 80 / 103



Image size, filter size, stride, channels

• Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

• Number of channels: number of filters used in each layer.

• Given an N ×N ×D image, F × F ×D filters, K channels, and
stride S, the resulting output will be of size M ×M ×K, where

M = (N − F )/S + 1
• Examples:

X N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output
X N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

• Padding: append zeros around the images. Common padding size:
(F − 1)/2, which preserves spatial size: M = N .

M. Figueiredo (IST) Deep Learning LxMLS 2025 80 / 103



Image size, filter size, stride, channels

• Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

• Number of channels: number of filters used in each layer.

• Given an N ×N ×D image, F × F ×D filters, K channels, and
stride S, the resulting output will be of size M ×M ×K, where

M = (N − F )/S + 1
• Examples:

X N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output
X N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

• Padding: append zeros around the images. Common padding size:
(F − 1)/2, which preserves spatial size: M = N .

M. Figueiredo (IST) Deep Learning LxMLS 2025 80 / 103



CNNs and convolutions

• Why is this called “convolutional”?

• The convolution of a signal x and a filter w, denoted x ∗ w, is:

h[t] = (x ∗ w)[t] =

∞∑
a=−∞

x[t− a] w[a].

• Basic idea: sparse/local connectivity and parameter tying/sharing.

M. Figueiredo (IST) Deep Learning LxMLS 2025 81 / 103



CNNs and convolutions

• Why is this called “convolutional”?

• The convolution of a signal x and a filter w, denoted x ∗ w, is:

h[t] = (x ∗ w)[t] =

∞∑
a=−∞

x[t− a] w[a].

• Basic idea: sparse/local connectivity and parameter tying/sharing.

M. Figueiredo (IST) Deep Learning LxMLS 2025 81 / 103



Convolutions with padding

• Expression above is for infinite-support signal x and filter w.

• Finite support: x = (x[0], ..., x[N − 1]); w = (w[−E], ..., w[E])
(F = 2E + 1)

h[t] = (x ∗ w)[t] =

E∑
a=−E

w[a]x[t− a], for t = E, ..., N − 1− E

The result has support of size N − 1−E −E + 1 = N − 2E = N −F + 1.

• Padding: append E = (F − 1)/2 zeros at each side of x.

(Slide credit to Rob Fergus)

M. Figueiredo (IST) Deep Learning LxMLS 2025 82 / 103



Convolutions with padding

• Expression above is for infinite-support signal x and filter w.

• Finite support: x = (x[0], ..., x[N − 1]); w = (w[−E], ..., w[E])
(F = 2E + 1)

h[t] = (x ∗ w)[t] =

E∑
a=−E

w[a]x[t− a], for t = E, ..., N − 1− E

The result has support of size N − 1−E −E + 1 = N − 2E = N −F + 1.

• Padding: append E = (F − 1)/2 zeros at each side of x.

(Slide credit to Rob Fergus)

M. Figueiredo (IST) Deep Learning LxMLS 2025 82 / 103



Convolutions with padding

• Expression above is for infinite-support signal x and filter w.

• Finite support: x = (x[0], ..., x[N − 1]); w = (w[−E], ..., w[E])
(F = 2E + 1)

h[t] = (x ∗ w)[t] =

E∑
a=−E

w[a]x[t− a], for t = E, ..., N − 1− E

The result has support of size N − 1−E −E + 1 = N − 2E = N −F + 1.

• Padding: append E = (F − 1)/2 zeros at each side of x.

(Slide credit to Rob Fergus)

M. Figueiredo (IST) Deep Learning LxMLS 2025 82 / 103



Convolutions and parameter tying

• Leads to translation/shift equivariance (a form of inductive bias)

• Advantages of sharing/tying parameters:

X Reduces the number of parameters to be learned.
X Allows dealing with arbitrary large, variable-length, inputs.

• Can be used for 1D (signals, text, sequences,...), 2D (images, spatial
distributions, ...), 3D (video, point clouds, ...), even graphs.

M. Figueiredo (IST) Deep Learning LxMLS 2025 83 / 103



Convolutions and parameter tying

• Leads to translation/shift equivariance (a form of inductive bias)

• Advantages of sharing/tying parameters:

X Reduces the number of parameters to be learned.
X Allows dealing with arbitrary large, variable-length, inputs.

• Can be used for 1D (signals, text, sequences,...), 2D (images, spatial
distributions, ...), 3D (video, point clouds, ...), even graphs.

M. Figueiredo (IST) Deep Learning LxMLS 2025 83 / 103



Convolutions and parameter tying

• Leads to translation/shift equivariance (a form of inductive bias)

• Advantages of sharing/tying parameters:

X Reduces the number of parameters to be learned.
X Allows dealing with arbitrary large, variable-length, inputs.

• Can be used for 1D (signals, text, sequences,...), 2D (images, spatial
distributions, ...), 3D (video, point clouds, ...), even graphs.

M. Figueiredo (IST) Deep Learning LxMLS 2025 83 / 103



Equivariance and invariance

• Pooling layers provide invariance.

M. Figueiredo (IST) Deep Learning LxMLS 2025 84 / 103



Pooling layer

• Makes the representations smaller, more manageable.

• Operates over each activation map (each channel) independently

• Example: max-pooling:

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 85 / 103



Max pooling: shift invariance

M. Figueiredo (IST) Deep Learning LxMLS 2025 86 / 103



Max pooling: shift invariance (II)

M. Figueiredo (IST) Deep Learning LxMLS 2025 87 / 103



Max pooling: rotation invariance

M. Figueiredo (IST) Deep Learning LxMLS 2025 88 / 103



Max pooling: scale invariance

M. Figueiredo (IST) Deep Learning LxMLS 2025 89 / 103



Multiple convolution filters: feature maps

• Different filter for each channel, but keeping spatial invariance:

(Figure credit: Andrew Ng)

M. Figueiredo (IST) Deep Learning LxMLS 2025 90 / 103



ImageNet dataset
• 14 million labelled images gathered (from the Internet)
• 22000 hierarchical classes
• ImageNet Large Scale Visual
• Recognition Challenge (ILSVRC)
• Classification: 1,000 object classes, 1.4M/50K/100K images
• Detection: 200 object classes, 400K/20K/40K images

M. Figueiredo (IST) Deep Learning LxMLS 2025 91 / 103



AlexNet (Krizhevsky, Sutskever, Hinton, 2012)

• 54M parameters; 8 layers (5 conv, 3 fully-connected)

• Trained on 1.4M ImageNet images

• Trained on 2 GPUs for a week (50x speed-up over CPU)

• Dropout regularization

• Test error: 16.4% (second best team was 26.2%)

M. Figueiredo (IST) Deep Learning LxMLS 2025 92 / 103



GoogLeNet

• GoogLeNet inception module: very deep convolutional network, fewer
(5M) parameters

M. Figueiredo (IST) Deep Learning LxMLS 2025 93 / 103



Residual networks (ResNets)

• Add skip-connections; tends to lead to more stable learning.

(He, Zhang, Ren, Sun, 2016)

• Key (but not the only) motivation: mitigate vanishing gradients.

• With H(x) = F(x) + λx, the gradient back-propagation becomes

∂L

∂x
=
∂L

∂H

∂H

∂x
=
∂L

∂H

(
∂F

∂x
+ λ

)

M. Figueiredo (IST) Deep Learning LxMLS 2025 94 / 103



Residual networks (ResNets)

• Add skip-connections; tends to lead to more stable learning.

(He, Zhang, Ren, Sun, 2016)

• Key (but not the only) motivation: mitigate vanishing gradients.

• With H(x) = F(x) + λx, the gradient back-propagation becomes

∂L

∂x
=
∂L

∂H

∂H

∂x
=
∂L

∂H

(
∂F

∂x
+ λ

)

M. Figueiredo (IST) Deep Learning LxMLS 2025 94 / 103



Residual networks (ResNets)

• Add skip-connections; tends to lead to more stable learning.

(He, Zhang, Ren, Sun, 2016)

• Key (but not the only) motivation: mitigate vanishing gradients.

• With H(x) = F(x) + λx, the gradient back-propagation becomes

∂L

∂x
=
∂L

∂H

∂H

∂x
=
∂L

∂H

(
∂F

∂x
+ λ

)

M. Figueiredo (IST) Deep Learning LxMLS 2025 94 / 103



Residual networks (ResNets)

• Very deep network (34 layers here, but up
to 152 layers!)

• VGG-19 (“Visual Geometry Group”) by
Simonyan and Zisserman (2014); 19 layers.

M. Figueiredo (IST) Deep Learning LxMLS 2025 95 / 103



Residual networks (ResNets)

(Li, Xu, Taylor, Studer, Goldstein, 2018)

M. Figueiredo (IST) Deep Learning LxMLS 2025 96 / 103



Beyond NNs and CNNs

• Other architectures have been proposed which offer alternatives to
convolutions

• For example: transformers.

• These are somewhat similar to “dynamic convolutions”.

• Covered in another lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 97 / 103



Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify an inner layer and tune the input to maximize its
activations: useful to see what kind of features it is representing.

• Specifying a higher layer produces more complex representations...

M. Figueiredo (IST) Deep Learning LxMLS 2025 98 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify an inner layer and tune the input to maximize its
activations: useful to see what kind of features it is representing.

• Specifying a higher layer produces more complex representations...

M. Figueiredo (IST) Deep Learning LxMLS 2025 98 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify an inner layer and tune the input to maximize its
activations: useful to see what kind of features it is representing.

• Specifying a higher layer produces more complex representations...

M. Figueiredo (IST) Deep Learning LxMLS 2025 98 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify an inner layer and tune the input to maximize its
activations: useful to see what kind of features it is representing.

• Specifying a higher layer produces more complex representations...

M. Figueiredo (IST) Deep Learning LxMLS 2025 98 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify an inner layer and tune the input to maximize its
activations: useful to see what kind of features it is representing.

• Specifying a higher layer produces more complex representations...

M. Figueiredo (IST) Deep Learning LxMLS 2025 98 / 103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Adversarial attacks

• Can we perturb an input slightly to fool
a classifier?

• For example: 1-pixel attacks

• Glass-box model: assumes access to the
model

• Backpropagate to the inputs to find
pixels which maximize the gradient

• There’s also work for black-box
adversarial attacks (don’t have access
to the model, but can query it).

(Credits: Su, Vargas, Sakurai (2018))

M. Figueiredo (IST) Deep Learning LxMLS 2025 99 / 103



Even worse: perturb objects, not images

• Print the model of a
turtle in a 3D printer.

• Perturbing the texture
fools the model into
thinking it’s a rifle,
regardless of the pose of
the object!

(Credits: Athalye, Engstrom, Ilyas, Kwok (2018))

• Neural networks may be very brittle!

M. Figueiredo (IST) Deep Learning LxMLS 2025 100 / 103



The anti-detection sweater

M. Figueiredo (IST) Deep Learning LxMLS 2025 101 / 103



More to come in upcoming lectures...

We covered only the very basics of deep learning, ...

... much more in upcoming lectures:

• Sequence and language models: Noah Smith

• Transformers and large pre-trained models: Sweta Agrawal

• Deep learning for vision and language: Desmond Elliot

M. Figueiredo (IST) Deep Learning LxMLS 2025 102 / 103



Recommended reading

Thank you! Questions?

M. Figueiredo (IST) Deep Learning LxMLS 2025 103 / 103



Recommended reading

Thank you! Questions?
M. Figueiredo (IST) Deep Learning LxMLS 2025 103 / 103


