Introduction to Deep Learning
a.k.a. “Neural” Networks

Mario A. T. Figueiredo

(based on slides also by André Martins and others)

TECNICO i
w LISBOA it e N

15th Lisbon Machine Learning Summer School, LxMLS 2025

M. Figueiredo (IST) Deep Learning LxMLS 2025 1/103

Outline

@ Brief History of Deep Learning (Before LLMs)

® From models of neurons to artificial neural networks

© Deep Learning via Empirical Risk Minimization
Gradient Descent and Stochastic Gradient Descent
Gradient Backpropagation and Autodiff
Better optimization: momentum, AdaGrad, RMSProp, Adam

O Convolutional Neural Networks

M. Figueiredo (IST) Deep Learning LxMLS 2025 2/103

Outline

@ Brief History of Deep Learning (Before LLMs)

=] & - = DA
M. Figueiredo (IST) Deep Learning

M. Figueiredo (IST)

Deep roots

Cybernetics

or GONTROL and COMMUNICATION
in THE ANIMAL and THE MACHINE

By NORBERT WIENER

Deep Learning LxMLS 2025

Early work on neural networks

McCulloch & Pitts, neuron model, 1943

nputs Walghts
w

M. Figueiredo (IST) LxMLS 2025 5/103

Early machine learning: the Perceptron

EA mArhine Jearing McCulloch-Pitts neurons,

learning by "error feedback”

Frank Rosenblatt,
perceptron, 1957

Beginnings of neural netwaorks

L]
[]
L J
»

Beginnings of machine learning

Ted Hoff & Bernard Widrow, Error backpropagation/feedback: still the
ADALIME, 1960 core of modern ML

M. Figueiredo (IST) LxMLS 2025

Four decades of evolution

Neural networks: 3 decades of evolution [1957-19839)

Hogfield networks, 1962 Rumelhart, Hirton, Williams, batkpropsgation, 1986

Prior work by Linnainmaa {1970, 1976],
‘Werbes {1974), LeCun {1385)

W |
T e

Sejnowski & Hnton, Boltzman Yann LeCun, deep conmvolutians networks,
mathines, 1083 1880 (inspired by Hubel & Whesed]

M. Figueiredo (IST) LxMLS 2025

End-to-end learning

Traditional machine learning

Raw Feature engineering Features Traditional ML model Crutput

: - Ourput
Feature learning + classification

M. Figueiredo (IST) Deep Learning LxMLS 2025 8/103

Patterns of Local
Contrast

=] & - = DA
M. Figueiredo (IST) Deep Learning

Deep networks: hierarchy of features

The ImageNet moment

The ImageNet moment
2012

ELAT
A
% AS8R
0% '
Trisae™el Chassificatin with Dieep Comolutineal
Meural Netwarls amo ztm avia

W rewdt / paar

A Kbty s S e

M. Figueiredo (IST) LxMLS 2025 10,103

The following years

IMAGENET

e o
BaE 0 &

o
=

.M Emo

2000 2011 2012 2013 2004 2015 206 2017

Classification Error

=)
R

Feature Enginesring Convolutional Meural Networks [Statistics provided by ILSVRC]

M. Figueiredo (IST) Deep Learning

Also in speech recognition...

3
58
u
E § 109 LY e
E 3 | -~ secunCy OEE
g‘ st Db L1
A word 12 s
P - S —
'3 ~
e -
o] 2 Y=
human ieve] ~.y
% . Y Y ¥ & et e
1990 1995 2000 2005 a0 2015 o X T rTE FT ==y

m]

=

DA

M. Figueiredo (IST) Deep Learning

machine translation,

Evolution of Machine Translation

o
g
>
F
5 .
3
Priural WAT
s 5 SDL8
bing [T
Suatistical MT
A ; & Kenmottcom
— y
150 002 Faty

M. Figueiredo (IST) Deep Learning LxMLS 2025 13 /103

... and biology

Forbes

AlphaFold Is The Most Important
Achievement In Al—Ever

thanks to Alph.
y all

M. Figueiredo (IST) LxMLS 2025 14/103

Why now? Frictionless reproducibility (Donoho, 2023)

GitHub

stack overflo

“ Hugging Face
&l
7]

M. Figueiredo (IST) LxMLS 2025 15/103

Outline

® From models of neurons to artificial neural networks

=] & - = DA
M. Figueiredo (IST) Deep Learning

Neuron model (McCulloch and Pitts, 1943)

y=smv)eR

Figure 3.6 Example 3.2: a threshold neural logic for y = z9{zy + T3).
Table 3.6 Truth table for Example 3.2

Neural Inputs || v = wlz, y = sgnv)
T Tz T3 =-2+2z +4z; 123 = sgn(wlza)
=T =1 —1 =7 = |
-1 =1 1 =19 -1
=] 1 -1 1 1
=1 1 1 -1 -1
I =1 —3 -1
1 -1 1 -5 -1
1 1 =1 5 1
1 1 1 3 1

M. Figueiredo (IST) Deep Learning LxMLS 2025 17 /103

Neuron model (McCulloch and Pitts, 1943)

y=smv)eR

Figure 3.6 Example 3.2: a threshold neural logic for y = z9{zy + T3).

Table 3.6 Truth table for Example 3.2

Neural Inputs || v = wlz, y = sgnv)
T Tz T3 =-2+2z +4z; 123 = sgn(wlza)
=T =1 —1 =7 = |
-1 =1 1 =19 -1
=] 1 -1 1 1
=1 1 1 -1 -1
I =1 —3 -1
1 -1 1 -5 -1
1 1 =1 5 1
1 1 1 3 1

® Biological neurons are
hugely more complex.

M. Figueiredo (IST) Deep Learning LxMLS 2025

17 /103

Neuron model (McCulloch and Pitts, 1943)

y=smv)eR

® Biological neurons are
hugely more complex.

Figure 3.6 Example 3.2: a threshold neural logic for y = z9{zy + T3).
® [ater models replaced

the hard threshold by

Table 3.6 Truth table for Example 3.2

Neural Inputs || v = wlz, y = sgn(v) . .
T w33 | =242 tdm—m = sgn(wlz,) more general activation
-1 -1 -1 =7 =]
-1 -1 1] -1
=] 1 -1 1 1
=1 1 1 -1 -1
1 -1 -1 -3 =
1 -1 1 -5 -1
1 1 =1 5 1
1 1 1 3 1

M. Figueiredo (IST) Deep Learning LxMLS 2025 17 /103

Artificial neuron
¢ Pre-activation (input activation):

D
z(x) = wle +b= Zwiazi + b,
i=1
w: connection weights
b: bias

M. Figueiredo (IST) Deep Learning LxMLS 2025 18 /103

Artificial neuron
¢ Pre-activation (input activation):

D
2(z) =wlz+b= Zwixi +b,
i=1

w: connection weights
b: bias

® Activation:
h(z) = g(z(z)) = g(w"z +b),

where g : R — R is the activation function.

M. Figueiredo (IST) Deep Learning LxMLS 2025 18 /103

Artificial neuron
¢ Pre-activation (input activation):

D
2(z) =wlz+b= Zwixi +b,
i=1

w: connection weights
b: bias

® Activation:
h(z) = g(z(z)) = g(w"z +b),

where g : R — R is the activation function.

® Typical activation functions (next): linear (identity); sigmoid (logistic
function); hyperbolic tangent (tanh); rectified linear unit (ReLU).

M. Figueiredo (IST) Deep Learning LxMLS 2025 18 /103

Linear activation

® No “squashing” of the input.

® Composing linear layers is equivalent to a single linear layer: no
expressive power increase by using multiple layers (but...).

M. Figueiredo (IST) Deep Learning LxMLS 2025 19/103

Sigmoid activation

ik enplu)

logisiie(u) =
1 = expsfm}

0T
z nE

9(z) =o(2) = 0

na

a

o2

Output in [0, 1], can be interpreted as a probability.
® Positive, bounded, strictly increasing.
® |ogistic regression corresponds to a network with a single sigmoid unit.

® Combining layers of sigmoid units increases expressiveness (more later).

M. Figueiredo (IST) Deep Learning LxMLS 2025 20/103

Hyperbolic tangent

g(z) = tanh(z) =

e —e *?

eZ _I_ efz

[]
® Related to the sigmoid via o(z) =
® Bounded, strictly increasing.

activation

0.5+

-3 -2

“Squashes” the neuron pre-activation to [—1, +1].
1+4+tanh(z/2)
=

® Combining layers of tanh units increases expressiveness (more later).

M. Figueiredo (IST) Deep Learning

LxMLS 2025

21/103

Rectified linear unit

g(z) = relu(z) = max{0, z} 0

33 -2 -1 0 1 2 3

® Non-negative, increasing, but not upper bounded.
Not differentiable at 0.

Leads to neurons with sparse activities (arguably closer to biology).

Very cheap to compute.

M. Figueiredo (IST) Deep Learning LxMLS 2025 22/103

Multi-layer network

¢ Key idea: use intermediate (hidden) layers between input and output.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23/103

Multi-layer network

¢ Key idea: use intermediate (hidden) layers between input and output.

® Fach hidden layer computes a representation of the input and
propagates it forward.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23/103

Multi-layer network

¢ Key idea: use intermediate (hidden) layers between input and output.

® Fach hidden layer computes a representation of the input and
propagates it forward.

® This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 /103

Multi-layer network

¢ Key idea: use intermediate (hidden) layers between input and output.

® Fach hidden layer computes a representation of the input and
propagates it forward.

® This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

® Also called feed-forward “neural” network

M. Figueiredo (IST) Deep Learning LxMLS 2025 23 /103

Multi-layer network

¢ Key idea: use intermediate (hidden) layers between input and output.

® Fach hidden layer computes a representation of the input and
propagates it forward.

® This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

® Also called feed-forward “neural” network

® | earning the parameters is much harder than in linear models.

M. Figueiredo (IST) Deep Learning LxMLS 2025 23/103

Single hidden layer
® Starting simple:

v several inputs (z € RP);

v single output (e.g. y € Rory € [0, 1])

o & = = o
M. Figueiredo (IST) Deep Learning

Single hidden layer

® Starting simple:
v several inputs (z € RP);

v single output (e.g. y € Rory € [0, 1])

® Intermediate, hidden, layer of K hidden units (h € RX)

M. Figueiredo (IST) Deep Learning LxMLS 2025 24 /103

Single hidden layer

® Hidden layer pre-activation:
z(x) = Wz + b0,

with W) ¢ REXD gnd p(l) ¢ RE

M. Figueiredo (IST) Deep Learning LxMLS 2025 25/103

Single hidden layer

® Hidden layer pre-activation:
z(x) = Wz + b0,

with W) ¢ REXD gnd p(l) ¢ RE

* Hidden layer activation:

where g : RX — RX is applied
component-by-component.

M. Figueiredo (IST) Deep Learning LxMLS 2025 25/103

Single hidden layer

¢ Hidden layer pre-activation:
z(x) = Wz + b0,

with W) ¢ REXD gnd p(l) ¢ RE

* Hidden layer activation:

where g : RX — R¥ s applied
component-by-component.

* Qutput layer activation: f(x) = o(h(z)"w® + b)), where
w® € RX and 0: R — R is the output activation function.

M. Figueiredo (IST) Deep Learning LxMLS 2025 25/103

e QOverall,

f(z)

Single hidden layer, single output

o(h(z)Tw® + b))

= o(w® gWWz + b)) +p?)

=] = = = Q>
M. Figueiredo (IST) Deep Learning

Single hidden layer, single output

e QOverall,
f@) = o(h(z) w® +b?)
= o(w(z)Tg(W(l)x + bWy + @)

® Examples:
v o(u) = u, for regression (y € R)

v o(u) = o(u) for binary classification (y € {£1}, f(z) =Py =1 | x))

M. Figueiredo (IST) Deep Learning LxMLS 2025 26/103

Single hidden layer, single output

e QOverall,
f@) = o(h(z) w® +b?)
= o(w(z)Tg(W(l)x + bWy + @)

® Examples:
v o(u) = u, for regression (y € R)

v o(u) = o(u) for binary classification (y € {£1}, f(z) =Py =1 | x))

M. Figueiredo (IST) Deep Learning LxMLS 2025 26/103

Single hidden layer, single output

e QOverall,

f@) = o(h(x) w® +b?)
= o(w(z)Tg(W(l)x + bWy + @)

® Examples:
v o(u) = u, for regression (y € R)

v o(u) = o(u) for binary classification (y € {£1}, f(z) =Py =1 | x))

e Non-linear in x and non-linear in W) and ()

M. Figueiredo (IST) Deep Learning LxMLS 2025 26/103

Single hidden layer, single output

e QOverall,
f@) = o(h(x) w® +b?)
= o(w(z)Tg(W(l)x + bWy + @)
® Examples:
v o(u) = u, for regression (y € R)
v o(u) = o(u) for binary classification (y € {£1}, f(z) =Py =1 | x))
e Non-linear in & and non-linear in W) and b(!)

® h(x) is a learned internal representation (not manually engineered)

M. Figueiredo (IST) Deep Learning LxMLS 2025 26/103

Single hidden layer, multiple outputs
® Qverall,

f@) = o(h(@) w® +b)
— o(w®@ g(WWz 1 bV 4 p?@)

M. Figueiredo (IST) Deep Learning LxMLS 2025 27/103

Single hidden layer, multiple outputs
® Qverall,
f@) = o(h(@) w® +b)

— o(w®@ g(WWz 1 bV 4 p?@)

® Examples:
v o(u) = o, for multiple regression (y € R)

v o(u) = softmax(u) for classification (with C' classes)

exp(u1) exp(uc)

Soeexplue)’” 7> exp(uc)

softmax(u) =

M. Figueiredo (IST) Deep Learning LxMLS 2025 27/103

Single hidden layer, multiple outputs
® Qverall,

f@) = o(h(@) w® +b)
— o(w®@ g(WWz 1 bV 4 p?@)

® Examples:
v o(u) = o, for multiple regression (y € R)

v o(u) = softmax(u) for classification (with C' classes)

exp(u1) exp(uc)

Soeexplue)’” 7> exp(uc)

softmax(u) =

e Non-linear in « and non-linear in W) and ()

M. Figueiredo (IST) Deep Learning LxMLS 2025 27 /103

M. Figueiredo (IST) Deep Learning

Single hidden layer, multiple outputs
® Qverall,
f@) = o(h(@) w® +b)
— o(w®@ g(WWz 1 bV 4 p?@)

® Examples:
v o(u) = o, for multiple regression (y € R)

v o(u) = softmax(u) for classification (with C' classes)

exp(u1) exp(uc)

Soeexplue)’” 7> exp(uc)

softmax(u) =

e Non-linear in « and non-linear in W) and ()

® h(x) is a learned internal representation (not manually engineered)

LxMLS 2025

27/103

Multiple (L > 1) hidden layers

¢ Hidden layer pre-activation (define
h(©) = z for convenience):

20(x) = WEORED () 4+ b,

with WO ¢ REexKe—1, p(t) ¢ REe

M. Figueiredo (IST) Deep Learning LxMLS 2025 28 /103

Multiple (L > 1) hidden layers

¢ Hidden layer pre-activation (define
h(©) = z for convenience):

20(x) = WEORED () 4+ b,
with WO ¢ REexKe—1, p(t) ¢ REe
¢ Hidden layer activation:

h(z) = g(2\ (x))

M. Figueiredo (IST) Deep Learning LxMLS 2025 28/103

Multiple (L > 1) hidden layers

¢ Hidden layer pre-activation (define
h(©) = z for convenience):

20(x) = WEORED () 4+ b,
with WO ¢ REexKe—1, p(t) ¢ REe
® Hidden layer activation:

h(z) = g(2\ (x))

® Qutput layer activation:

f(x) = o(z L) (2)) = o(WEADRD) () 4 pLA+D),

M. Figueiredo (IST) Deep Learning LxMLS 2025 28 /103

Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

M. Figueiredo (IST) Deep Learning LxMLS 2025 29/103

Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

® First proved for the sigmoid case by Cybenko (1989);

M. Figueiredo (IST) Deep Learning LxMLS 2025 29/103

Universal approximation theorem

Theorem
An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

® First proved for the sigmoid case by Cybenko (1989);

® Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

M. Figueiredo (IST) Deep Learning LxMLS 2025 29/103

Universal approximation theorem

Theorem
An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

® First proved for the sigmoid case by Cybenko (1989);

® Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

® (Caveat: may need exponentially many hidden units.

M. Figueiredo (IST) Deep Learning LxMLS 2025 29/103

Universal approximation: illustration

M. Figueiredo (IST) Deep Learning

Deeper networks

® Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

o((5)"")

M. Figueiredo (IST) Deep Learning LxMLS 2025 31/103

Deeper networks
® Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

o((5)"")

® For fixed K, deeper networks are exponentially more expressive.

M. Figueiredo (IST) Deep Learning LxMLS 2025 31/103

Deeper networks
® Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

o((5)"")

® For fixed K, deeper networks are exponentially more expressive.

® Proved by Montufar, Pascanu, Cho, and Bengio (2014).

M. Figueiredo (IST) Deep Learning LxMLS 2025 31/103

Outline

© Deep Learning via Empirical Risk Minimization
Gradient Descent and Stochastic Gradient Descent
Gradient Backpropagation and Autodiff
Better optimization: momentum, AdaGrad, RMSProp, Adam

M. Figueiredo (IST) Deep Learning LxMLS 2025 32/103

Empirical risk minimization

® Training/learning: choose parameters 8 := {(W) b))} [F1 by
minimizing the empirical risk, maybe plus a regularizer:

n

£(8) = - > L(F(i:0).) + X(6)
=1

M. Figueiredo (IST) Deep Learning LxMLS 2025 33/103

Empirical risk minimization

® Training/learning: choose parameters 8 := {(W) b))} [F1 by
minimizing the empirical risk, maybe plus a regularizer:

Z L(f(x;0), yi) + XQ(6)

v {(xi,y:), i =1,...,n} is a training set

M. Figueiredo (IST) Deep Learning LxMLS 2025 33/103

Empirical risk minimization

® Training/learning: choose parameters 8 := {(W) b))} [F1 by
minimizing the empirical risk, maybe plus a regularizer:

Z L(f(x;0), yi) + XQ(6)

v {(xi,y:), i =1,...,n} is a training set

v L(f(x;;0),y;) is a loss function

M. Figueiredo (IST) Deep Learning LxMLS 2025 33/103

Empirical risk minimization

® Training/learning: choose parameters 8 := {(W) b))} [F1 by
minimizing the empirical risk, maybe plus a regularizer:

Z L(f(x;0), yi) + XQ(6)

v {(xi,y:), i =1,...,n} is a training set
v L(f(x;;0),y;) is a loss function

v Q(0) is a regularizer

M. Figueiredo (IST) Deep Learning LxMLS 2025 33/103

Empirical risk minimization

® Training/learning: choose parameters 8 := {(W) b))} [F1 by
minimizing the empirical risk, maybe plus a regularizer:

Z L(f(x;0), yi) + XQ(6)

v {(xi,y:), i =1,...,n} is a training set
v L(f(x;;0),y;) is a loss function
v Q(0) is a regularizer

v' X is the regularization constant (hyperparameter to be tuned)

M. Figueiredo (IST) Deep Learning LxMLS 2025 33/103

Outline

© Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

M. Figueiredo (IST) Deep Learning LxMLS 2025 34/103

Gradient Descent

® Gradient descent algorithm:
v Start at some initial point 8y € R?
v Fort=1,2,...,

> choose step-size a4,

> take a step of size ax in the direction of the negative gradient:

Ot = 0t71 — atVHL(OtA)

M. Figueiredo (IST) Deep Learning LxMLS 2025 35/103

Gradient Descent

® Gradient descent algorithm:
v Start at some initial point 8y € R?
v Fort=1,2,...,

> choose step-size a4,

> take a step of size ax in the direction of the negative gradient:

Ot = 0t71 — atVHL(OtA)

M. Figueiredo (IST) Deep Learning LxMLS 2025 35/103

Gradient Descent

® Gradient descent algorithm:

v Start at some initial point 8y € R?

v Fort=1,2,...,
> choose step-size a4,

> take a step of size ax in the direction of the negative gradient:

Ot = 0t71 — atVHL(OtA)

® Several (many) ways to choose ay;

M. Figueiredo (IST) Deep Learning LxMLS 2025 35/103

Gradient Descent

® Gradient descent algorithm:

v Start at some initial point 8y € R?

v Fort=1,2,...,
> choose step-size a4,

> take a step of size ax in the direction of the negative gradient:

Ot = 0t71 — atVHL(OtA)
® Several (many) ways to choose ay;

® Some stopping criterion is used; e.g., ||V L (6,)| < 9.

M. Figueiredo (IST) Deep Learning LxMLS 2025 35/103

Gradient descent

® The empirical risk minimization (ERM) objective function:

n

£(6) = A6)+ - 3" L(f(wi; 0),m0)

i=1

1 n
= - Z\)\Q(O) + L(f(xz;;0), yz)J
=1 £:(6)

M. Figueiredo (IST) Deep Learning LxMLS 2025 36/103

Gradient descent

® The empirical risk minimization (ERM) objective function:

n

£(6) = A6)+ - 3" L(f(wi; 0),m0)

i=1

— %Z\AQ(O)JrL(f(:m;O),yQ = %Zﬁi((?)
=1 =1

£:(0)

M. Figueiredo (IST) Deep Learning LxMLS 2025 36/103

Gradient descent

® The empirical risk minimization (ERM) objective function:
1 n
£(O) = AQ(6)+ > L(f(2::0),y:)
i=1

— %Z\AQ(O)JrL(f(:m;O),yQ = %Zﬁi((?)
=1 =1

£:(0)

® The gradient:

M. Figueiredo (IST) Deep Learning LxMLS 2025 36/103

Gradient descent

® The empirical risk minimization (ERM) objective function:
1 n
£(O) = AQ(6)+ > L(f(2::0),y:)
i=1

= L0 06) + L@ 0).m) = > Li(6)
=1 =1

£:(0)

® The gradient:
1 n
Vol(0) = =) VoLi(0)
i
® Requires a full pass over the data to update the weights: too slow!

M. Figueiredo (IST) Deep Learning LxMLS 2025 36/103

Stochastic gradient descent (SGD)

® Sample one gradient Vo £;(0) uniformly at random: j € {1,...,n}

M. Figueiredo (IST) Deep Learning LxMLS 2025 37/103

Stochastic gradient descent (SGD)
® Sample one gradient Vo £;(0) uniformly at random: j € {1,...,n}

® This an unbiased estimate of the gradient,
E;[VoLl;(8 Z Voli(0) = VoL(6)

but may be a noisy (high variance) one.

M. Figueiredo (IST) Deep Learning LxMLS 2025 37/103

Stochastic gradient descent (SGD)

® Sample one gradient Vo £;(0) uniformly at random: j € {1,...,n}

® This an unbiased estimate of the gradient,
E;[VoLl;(8 Z Voli(0) = VoL(6)

but may be a noisy (high variance) one.

® Stochastic gradient “descent” (SGD):
v Start at some initial point 8y € R?
v Fort=1,2,...,

> sample ¢ € {1,...,n} at random and choose step-size a,

> take a step of size ay in the direction of the negative gradient:
0, =0, 1— . VoL(f(xi;0:-1),v:)
R

Visual summary

Finite sums Expectation

« AV (@) g ‘Vf (=)
oV fil) ',.u-v-jj"‘ VF(:: z)
Draw i € {1,...,n} uniformly. Draw z ~ z
Tit1 = Tk — TV fi(zx) Tt =Zp — TEV.E (%,2)

Theorem: 1If f is strongly convex and 7 ~ 1/k,
E(|zx ~ z*[*) = O(1/k)

(Plcture by Gabriel Peyré)
24

M. Figueiredo (IST) Deep Learning

SGD with mini-batches

® Instead of a single sample, use a mini-batch {j,

=] & - = DA
M. Figueiredo (IST) Deep Learning

SGD with mini-batches
e Instead of a single sample, use a mini-batch {ji,...,jg} (B < n)

® Mini-batch SGD (SGD):
v Start at some initial point 8y € R?
v Fort=1,2...,
> sample {j1,...78} C {1,...,n}; choose step-size a,

> take a step of size a; in the direction of the negative gradient:

B
1
0, =60;_1— atE Z VOL(f(mji;ef—l)vyji)

=1

M. Figueiredo (IST) Deep Learning LxMLS 2025 39/103

SGD with mini-batches
e Instead of a single sample, use a mini-batch {ji,...,jg} (B < n)

® Mini-batch SGD (SGD):
v Start at some initial point 8y € R?
v Fort=1,2...,
> sample {j1,...78} C {1,...,n}; choose step-size a,

> take a step of size a; in the direction of the negative gradient:

B
1
0, =60;_1— atE Z VOL(f(mji;ef—l)vyji)

=1

= Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

® | ess noisy, still unbiased
gradient estimate.

M. Figueiredo (IST) Deep Learning LxMLS 2025 39/103

The key Ingredients of SGD

The loss function L(f(x;;0),v;);

A procedure for computing its gradient Vo L(f(x;;0),y;);

The regularizer (0);

e .. its gradients, Vg(0)

M. Figueiredo (IST) Deep Learning LxMLS 2025 40/103

The key Ingredients of SGD

The loss function L(f(x;;0),v;);

A procedure for computing its gradient Vo L(f(x;;0),y;);

The regularizer (0);

e .. its gradients, Vg(0)

Let's see them one at the time...

M. Figueiredo (IST) Deep Learning LxMLS 2025 40/103

Squared error loss

® The common choice for regression/reconstruction problems

=] = = = nae
M. Figueiredo (IST) Deep Learning

Squared error loss

® The common choice for regression/reconstruction problems

® The goal is to have y = f(x;0) = y

M. Figueiredo (IST) Deep Learning LxMLS 2025 41/103

Squared error loss

® The common choice for regression/reconstruction problems
® The goal is to have y = f(x;0) = y
® Squared error loss:

- 1,
L(g,y) = §||y—y||2

M. Figueiredo (IST) Deep Learning LxMLS 2025 41/103

Squared error loss

The common choice for regression/reconstruction problems

The goal is to have y = f(x;0) = y

Squared error loss:
Iy 1. 9
L(y,y) = Slly-yl

® | oss gradient:

OL(y,y)
0Y;

~

=yi—y; = VgLlyy)=y-y

M. Figueiredo (IST) Deep Learning LxMLS 2025 41/103

Squared error loss

The common choice for regression/reconstruction problems

The goal is to have y = f(x;0) = y

Squared error loss:
. 1. 2
L(y,y) = Slly-yl
® | oss gradient:

oL(Y,y) - _ _
%ﬂ/j—yj = Vgl(yy)=y-y
Yj

Notice: this is not (yet) Vg L(f(x;0),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 41/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

® NN output: f(x;0) = softmax(z(:c;@)) (where z = z(E+1)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer
® NN output: f(x;0) = softmax(z(:c;@)) (where z = z(E+1)

® Negative log-likelihood, i.e., cross-entropy loss:

L(f(x:6), 21 (c—y) l0g fo(x; 6)

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer
® NN output: f(x;0) = softmax(z(:c;@)) (where z = z(E+1)

® Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;0), Z Lie—y) log fe(z; 0) = —log [softmax(z(m;O))]y

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

NN output: f(x;0) = softmax(z(:c;@)) (where z = z(I+1)

Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;0), Z Lie—y) log fe(z; 0) = —log [softmax(z(m;O))]y

Intuition: reduce loss = increase [softmax(z(a:i;e))]y_

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

NN output: f(x;0) = softmax(z(m;@)) (where z = z(I+1)

Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;0), Z Lie—y) log fe(z; 0) = —log [softmax(z(m;O))]y

Intuition: reduce loss = increase [softmax(z(a:i;e))]y_

Loss gradient with respect to output pre-activation z. = [z(x;0))] .

OL(f(x;0,y))

5, = [softmax(z(x))], — 1(c=y),

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

NN output: f(x;0) = softmax(z(:c;@)) (where z = z(I+1)

Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;0), Z Lie—y) log fe(z; 0) = —log [softmax(z(a:;O))]y

Intuition: reduce loss = increase [softmax(z(a:i;e))]y_

Loss gradient with respect to output pre-activation z. = [z(:z:; 9))]C

OL(f(z;6.y))
0z,

Intuition: OL/dz. > 0, for ¢ # y;

= [softmax(z(-’ﬂ))]c = Lie=y)s

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

NN output: f(;6) = softmax (z(x;8)) (where z = z(I+1)

Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;0), Z Lie=y) 10g fe(x;0) = —log [softmax(z(a;;@))]y

Intuition: reduce loss = increase [softmax(z(a:i;o))]y_

Loss gradient with respect to output pre-activation z. = [z(x;0))],

OL(f(z;6.y))
0z,

Intuition: OL/0z. > 0, for ¢ # y; OL/0z. <0, for ¢ = y (true class).

= [softmax(z(-’ﬂ))]c = Lie=y)s

M. Figueiredo (IST) Deep Learning LxMLS 2025 42/103

Cross-entropy loss (negative log-likelihood)

® The common choice for classification with a softmax output layer

NN output: f(;6) = softmax (z(x;8)) (where z = z(I+1)

Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;0), Z Lie=y) 10g fe(x;0) = —log [softmax(z(m;@))]y

Intuition: reduce loss = increase [softmax(z(a:i;O))]y,

Loss gradient with respect to output pre-activation z. = [z(x;0))],

OL(f(z;6.y))
0z,

Intuition: OL/0z. > 0, for ¢ # y; OL/0z. <0, for ¢ = y (true class).

= [softmax(z(-’ﬂ))]c = Lie=y),

® Again, this is not (yet) Vg L(f(x;0),y)
LxMLS 2025 42/103

The Key Ingredients of SGD

The loss function L(f(xi;0),y:); v

A procedure for computing its gradient Vg L(f(x;;0),y;); next

The regularizer ©(0);

e .. its gradients, Vg(0)

M. Figueiredo (IST) Deep Learning LxMLS 2025 43/103

Outline

© Deep Learning via Empirical Risk Minimization

Gradient Backpropagation and Autodiff

M. Figueiredo (IST) Deep Learning LxMLS 2025 44 /103

Gradient computation
® Recall the goal: compute Vo L(f(x;0),v:),

=] = = = nae
M. Figueiredo (IST) Deep Learning

Gradient computation
® Recall the goal: compute Vo L(f(x;0),v:),

® This will be done with the gradient backpropagation algorithm

M. Figueiredo (IST) Deep Learning LxMLS 2025 45/103

Gradient computation
® Recall the goal: compute Vo L(f(x;0),v:),

® This will be done with the gradient backpropagation algorithm
® Key idea: use the chain rule for derivatives!

_ dh(z) _ df(u) dg(z)
hx) = f(9()) = dz du dx

u=g()

M. Figueiredo (IST) Deep Learning LxMLS 2025 45/103

Gradient computation
Recall the goal: compute VoL (f(xi;0),y:),

This will be done with the gradient backpropagation algorithm

® Key idea: use the chain rule for derivatives!
h(z) = f(g(z)) = dz(;) = dg(uu) s dz(;)'
® Example:
r = uv ar(t) B
u=t? v=3t+1 o
t

M. Figueiredo (IST) Deep Learning LxMLS 2025 45/103

Gradient computation
Recall the goal: compute VoL (f(xi;0),y:),

This will be done with the gradient backpropagation algorithm

® Key idea: use the chain rule for derivatives!
h(z) = f(g(z)) = dz(;) = dgiu) s dz(;)'
® Example:
e or(t) _ or(u) du(t) Or(v) dv(t)
! v —3t41 ot ou Ot ov Ot
t

M. Figueiredo (IST) Deep Learning LxMLS 2025 45/103

Gradient computation
Recall the goal: compute VoL (f(xi;0),y:),

This will be done with the gradient backpropagation algorithm

® Key idea: use the chain rule for derivatives!
_ dh(@) _dj(w)| dg(a)
Wa)=1lo() = dez du |,_ dr =
u=g(z)
® Example:
e or(t) Or(u) du(t) n or(v) du(t)
y=t2 v =3t 41 ot _ 2tva—1|f . ot ov 0Ot
. = 2t(3t+ 1)+ 3t = 9¢* + 2¢.

M. Figueiredo (IST) Deep Learning LxMLS 2025 45/103

Hidden layer gradient

® Recap: z(+D) = wEHD R0 4 pe+D)

OL(f(x;0),y) <= OL(f(x;0),y) 92"
ono B Z FECOINPNG
J T 1 J

_ OL(f(xz;0),y) (6+1)
- Z az(e-u) VVM

%

M. Figueiredo (IST) Deep Learning LxMLS 2025 46 /103

Hidden layer gradient

® Recap: z(+D) = wEHD R0 4 pe+D)

OL(f(;6),y) OL(f (x0),y) 021"V
ah(é) Z 8Z(€+1) ah(@)

7 7
OL(f(x;0),y) (6+1)
Z az(e+1) Wi,j

%

® Hence

.
Vo L(f(x;0),y) = WD V) L(f(x;0),y).

M. Figueiredo (IST) Deep Learning LxMLS 2025 46 /103

Hidden layer gradient (before activation)

©)

® Recap: hj)

=g(z; "), where g : R — R is the activation function.

J J J
OL(F(@:0).1) (0
8h(€) J
J

M. Figueiredo (IST) Deep Learning LxMLS 2025 47 /103

Hidden layer gradient (before activation)

©)

® Recap: hj 2

=g(z; "), where g : R — R is the activation function.

OL(f(x;0),y) _ OL(f(x;0),y) Ony

8zj 8h]- 823’
LI 0
on'" !

® Hence Vi L(f(%;0),y) = Vjo L(f(2;0),y) © g'(z19).

M. Figueiredo (IST) Deep Learning LxMLS 2025 47 /103

Hidden layer gradient (before activation)

©)

® Recap: hj)

=g(z; "), where g : R — R is the activation function.

J J J
OL(F(@:0).1) (0
8h(€) J
J

® Hence Vi L(f(%;0),y) = Vjo L(f(2;0),y) © g'(z19).

* What are the activation function derivatives g’(z(9))?

M. Figueiredo (IST) Deep Learning LxMLS 2025 47 /103

Linear activation

Derivative:

3
o = = E DA
M. Figueiredo (IST) Deep Learning

Sigmoid activation

Derivative:

10
1
0.8}
1+e*#
06
04

g'(2) = g(z)(1 - g(2))

M. Figueiredo (IST)

0.0
L

i

Deep Learning

it
)

o
o
=)

Hyperbolic tangent activation

e —e *
— tanh - o5l
() = tanh(z) = S——
Derivative:
1O\ 2 _ 2
g'(z) =1—g(2)* = sech®(x) " :
oy <9 = =

M. Figueiredo (IST) Deep Learning

Rectified linear unit activation

g(z) = relu(z) = max{0, z} 5]

Derivative (except for z = 0):

g'(z) =1l.>0

M. Figueiredo (IST) Deep Learning

Parameter gradient

® Recap: 20 = WORUE=D) L)

i,J i irj
OL(f(2:0)y) , (e-1)
8z J

M. Figueiredo (IST) Deep Learning LxMLS 2025 52/103

Parameter gradient

® Recap: 20 = WORUE=D) L)

OL(f (x:6),y) OL(f(x;6),y) 92"

i

() ©) (€)
av‘fl,] 82’1 8W1,j
OL(f(x;0),y) 1)
92 /

(2

® Hence vv‘,'(z).[/('f(ﬂﬁ,'7 0), y) = VZ(Z)L(f(m; 0)’ y)h(z_l)—l—

M. Figueiredo (IST) Deep Learning LxMLS 2025 52 /103

Parameter gradient

® Recap: 20 = WORUE=D) L)

OL(f (x:6),y) OL(f(x;6),y) 92"

i

ow9) -9 aw
1,7 1 2,7
OL(f(x;0),y) 1)
92 /

(2

® Hence vv‘,'(z).[/(f(ﬂﬁ,'7 0), y) = VZ(Z)L(f(:L'; 0)’ y)h(z_l)—l—

e Similarly, Vyo L(f(x;0),y) = V0 L(f(x;0),y)

M. Figueiredo (IST) Deep Learning LxMLS 2025 52/103

Backpropagation

Compute output gradient (before activation):
Vaown L(f(x;0),y) = f(z) — 1,

for ¢ from L 4+ 1 to 1 do
Compute gradients of hidden layer parameters:
-
Vwo L(f(2:0),y) = VaoL(f(;0),y) bV
vb(Z)L(f(w;a)ﬂy> = vz(f)L(f(w70)7y)

Compute gradient of hidden layer below:
T
Vaeo L(f(%:0),y) = W Vo L(f(x:0),y)

Compute gradient of hidden layer below (before activation):
Ve L(f(:6),y) = Ve L(f(2:0).y) 0 ¢/ (z)

end for

M. Figueiredo (IST) Deep Learning LxMLS 2025 53/103

The computation graph view

® Forward propagation can be represented as a
DAG (directed acyclic graph).

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 /103

The computation graph view
® Forward propagation can be represented as a
DAG (directed acyclic graph).

® Allows implementing forward propagation in a
modular way.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 /103

The computation graph view

® Forward propagation can be represented as a
DAG (directed acyclic graph).

® Allows implementing forward propagation in a
modular way.

® Fach box can be an object with a fprop
method, which computes the output of the box
given its inputs.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 /103

The computation graph view

® Forward propagation can be represented as a
DAG (directed acyclic graph).

® Allows implementing forward propagation in a
modular way.

® Fach box can be an object with a fprop
method, which computes the output of the box
given its inputs.

e Calling the fprop method of each box in the
right order yields forward propagation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 54 /103

Automatic differentiation (Autodiff)

® Backpropagation is also implementable in a
modular way.

M. Figueiredo (IST) Deep Learning LxMLS 2025 55/103

Automatic differentiation (Autodiff)

® Backpropagation is also implementable in a
modular way.

® Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

M. Figueiredo (IST) Deep Learning LxMLS 2025 55/103

Automatic differentiation (Autodiff)

® Backpropagation is also implementable in a
modular way.

® Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

® Can make use of cached computation done
during the fprop method

M. Figueiredo (IST) Deep Learning LxMLS 2025 55/103

Automatic differentiation (Autodiff)

® Backpropagation is also implementable in a
modular way.

® Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

® Can make use of cached computation done
during the fprop method

® Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)

M. Figueiredo (IST) Deep Learning LxMLS 2025 55/103

Many software toolkits for deep learning

Caffe
Tensorflow
Torch € ®
Pytorch f @ tOrCh

* MXNet TensorFlow
e Keras
o JAX theano

@Xnet PYTHORCH

All implement automatic differentiation.

M. Figueiredo (IST) Deep Learning LxMLS 2025 56 /103

The key ingredients of SGD

The loss function L(f(xi;0),y:); v

A procedure for computing its gradient Vo L(f(x;;0),v:); v

The regularizer (8); next

e ... its gradients, VgQ(0). next

M. Figueiredo (IST) Deep Learning LxMLS 2025 57 /103

Regularization

® QObjective function to be minimized:
X
£(0) = 29(0) + ;wm; 0).:)

® We will next focus on the regularizer and its gradient

M. Figueiredo (IST) Deep Learning LxMLS 2025 58/103

Regularization

® QObjective function to be minimized:
X
£(6) = 20(0) + ;Mf(xi; 0).:)

® We will next focus on the regularizer and its gradient
® We will study:

v {5 regularization (weight decay);
V' £y regularization (LASSO-type);

v" dropout regularization, which doesn't have the form above.

M. Figueiredo (IST) Deep Learning LxMLS 2025 58 /103

/5 regularization

e The biases b, ..., b(ETY are not regularized; only the weights:
L+1

1
20) = 5 > IW3
=1

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 /103

/5 regularization

e The biases b, ..., b(ETY are not regularized; only the weights:
L+1

1
20) = 5 > IW3
=1

® Equivalent to a Gaussian prior on the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 /103

/5 regularization

e The biases b, ..., b(ETY are not regularized; only the weights:
L+1

1
20) = 5 > IW3
=1

® Equivalent to a Gaussian prior on the weights

¢ Gradient of this regularizer is: V0 Q(0) = w

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 /103

/5 regularization

The biases b, ..., b(LTY are not regularized; only the weights:
L+1

1
20) = 5 > IW3
=1

Equivalent to a Gaussian prior on the weights

Gradient of this regularizer is: V0 Q(0) = w

Weight decay effect
WO WO V0 Li(6)
= WO — AV Q0) + Vo L(f (i 0), 1))
= (L=)W =V L(f(2::0). y:)
<1

M. Figueiredo (IST) Deep Learning LxMLS 2025 59 /103

/1 regularization

® The biases b, ..., b(E+1D) are not regularized; only the weights:

ZHW I —ZZIW(“

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 /103

/1 regularization

® The biases b, ..., b(E+1D) are not regularized; only the weights:

ZHW I —ZZIW“)

® Equivalent to Laplacian prior on the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 /103

/1 regularization

® The biases b, ..., b(E+1D) are not regularized; only the weights:

=2 IW = ZZIW“)
4

® Equivalent to Laplacian prior on the weights

® Gradient is: V0 §2(0) = sign(W ()

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 /103

/1 regularization

The biases b™M) ..., b(E+1) are not regularized; only the weights:

ZHW I —ZZIW“)

® Equivalent to Laplacian prior on the weights

Gradient is: V) Q(0) = sign(W ()

® Promotes sparsity of the weights

M. Figueiredo (IST) Deep Learning LxMLS 2025 60 /103

Dropout regularization

(a) Standard Neural Net (b) After applving dropout.

During training, remove some hidden units, chosen at random

Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014).

M. Figueiredo (IST) Deep Learning LxMLS 2025 61/103

Dropout regularization

® Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

=] = = = nae
M. Figueiredo (IST) Deep Learning

Dropout regularization

® Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

® Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 /103

Dropout regularization

® Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

® Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

® Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1 —p

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 /103

Dropout regularization

Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

® Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1 — p

This ensures that the expected value of the output remains the same
during training and inference.

M. Figueiredo (IST) Deep Learning LxMLS 2025 62 /103

Backpropagation with dropout

Compute output gradient (before activation):

Vo L(f(x;0),y) = —(1, — f(x))

for ¢ from L +1 to 1 do
Compute gradients of hidden layer parameters:

T

Vwo L(f(z;0),y) = VooL(f(x;0),y) NGy
includes mask m (=1

Vb<@)L(f(w;9),y) = Vz(z)L(f(x;O),y)

Compute gradient of hidden layer below:
T
Vaen L(£(x:0),y) = W V0 L(f(:0).y)

Compute gradient of hidden layer below (before activation):
Ve nL(f(2:0),y) = Vien L(f(2:0),y) @ g'(z" V) o mlY

end for

M. Figueiredo (IST) Deep Learning LxMLS 2025

63/103

Tricks of the trade: Initialization
® Bijases: initialize at zero

=] = = = nae
M. Figueiredo (IST) Deep Learning

Tricks of the trade: Initialization
® Bijases: initialize at zero
® Weights:

=] & - = DA
M. Figueiredo (IST) Deep Learning

Tricks of the trade: Initialization

® Bijases: initialize at zero

® Weights:

v' Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 /103

Tricks of the trade: Initialization
® Bijases: initialize at zero

® Weights:

v' Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

v' Cannot initialize the weights to the same value (need to break the
symmetry)

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 /103

Tricks of the trade: Initialization

® Bijases: initialize at zero

® Weights:

v' Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

v' Cannot initialize the weights to the same value (need to break the
symmetry)

v Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

V6

w') ~ Ut itht = ————
,J [)], Wi KO +K(€_1)

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 /103

Tricks of the trade: Initialization

® Bijases: initialize at zero

® Weights:

v" Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

v' Cannot initialize the weights to the same value (need to break the
symmetry)

v Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

Ve
VE© ¥ K1)

v For RelLU activations, the mean should be a small positive number

W) ~ U[-t,1], with t =

M. Figueiredo (IST) Deep Learning LxMLS 2025 64 /103

More tricks of the trade

Hyperparameter tuning (just use Optuna)

Normalization of the data

® Decaying the learning rate

Mini-batches size

Adaptive learning rates

Gradient checking

Debug on small datasets

M. Figueiredo (IST) Deep Learning LxMLS 2025 65/103

Outline

© Deep Learning via Empirical Risk Minimization

Better optimization: momentum, AdaGrad, RMSProp, Adam

M. Figueiredo (IST) Deep Learning LxMLS 2025 66 /103

Momentum

® Momentum: remember the previous step, combine it in the update:
0, =60; 1 — g(0;1) +7(0:—1 — 0;2);

g(8,) is the gradient estimate (batch, single sample, minibatch).

M. Figueiredo (IST) Deep Learning LxMLS 2025 67 /103

Momentum

® Momentum: remember the previous step, combine it in the update:

0, =01 —ag(60,_1) + 7(0—1 — 6,_2);

g(0;) is the gradient estimate (batch, single sample, minibatch).

® Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.

() Stmtie Pt

g
-

M. Figueiredo (IST) Deep Learning LxMLS 2025 67 /103

Adaptive gradient (AdaGrad)

e AdaGrad®: use separate step sizes for each component 0 of 6;.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 /103

Adaptive gradient (AdaGrad)

e AdaGrad®: use separate step sizes for each component 0 of 6;.

® Scale the update of each component (¢ for numerical stability)

(0%

\/ Gj,t—l +e€

00 =0j1-1— CY

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 /103

Adaptive gradient (AdaGrad)

e AdaGrad®: use separate step sizes for each component 0 of 6;.

® Scale the update of each component (¢ for numerical stability)
(6%

\/Gth—l +e€

® where GG ; accumulates all the squared gradient values in component ¢

Hj,t = 9j,t—1 - gj(at—l)

t
Gjt = Z(gj(et’))z =Gjt1+ (gg‘(‘91t))2

t'=1

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 /103

Adaptive gradient (AdaGrad)

e AdaGrad®: use separate step sizes for each component 0 of 6;.
® Scale the update of each component (¢ for numerical stability)
[0
Ot = bjt—1 — ———= 9;(6t—1
D> > m]()
® where GG ; accumulates all the squared gradient values in component ¢
: 2 2
Gie =Y _(9;(60))" = Gj11+ (9;(61))
t'=1

[

Advantages: robust to choice of a and to different parameter scaling.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 /103

Adaptive gradient (AdaGrad)

e AdaGrad®: use separate step sizes for each component 0 of 6;.
® Scale the update of each component (¢ for numerical stability)
[0
Ot = bjt—1 — ———= 9;(6t—1
D> > m]()
® where GG ; accumulates all the squared gradient values in component ¢
: 2 2
Gie =Y _(9;(60))" = Gj11+ (9;(61))
t'=1

® Advantages: robust to choice of a and to different parameter scaling.
[}

Drawbacks: step size vanishes, because Gj; > G 1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo.-12, 2011

M. Figueiredo (IST) Deep Learning LxMLS 2025 68 /103

Root Mean Square Propagation (RMSProp)

® RMSProp? addresses the vanishing learning issue.

2Presented by G. Hinton in a Coursera lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 69 /103

Root Mean Square Propagation (RMSProp)

® RMSProp? addresses the vanishing learning issue.

® Same scaled update of each component

«
0. =0, L e
it = 011 Gt 95(60-1)

2Presented by G. Hinton in a Coursera lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 69 /103

Root Mean Square Propagation (RMSProp)

® RMSProp? addresses the vanishing learning issue.

® Same scaled update of each component

(0%
S ‘07
mg](t 1)

® Use a forgetting/decay factor ~y (typically 0.9),

Ot = 0j1—1 —

Gie =7 Gjao1 + (1 —7)(9;(61))°

2Presented by G. Hinton in a Coursera lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 69 /103

Root Mean Square Propagation (RMSProp)

RMSProp? addresses the vanishing learning issue.

Same scaled update of each component

(0%
S ‘07
mg](t 1)

Use a forgetting/decay factor v (typically 0.9),

Ot = 0j1—1 —

Gie =7 Gjao1 + (1 —7)(9;(61))°

® Now, Gj; may be smaller than G ;1.

2Presented by G. Hinton in a Coursera lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 69 /103

Root Mean Square Propagation (RMSProp)

RMSProp? addresses the vanishing learning issue.

Same scaled update of each component

(0%
S ‘07
mg](t 1)

Use a forgetting/decay factor v (typically 0.9),

Ot = 0j1—1 —

Gie =7 Gjao1 + (1 —7)(9;(61))°

® Now, Gj; may be smaller than G ;1.

Advantages: robust to choice of « (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 69 /103

Adam: adaptive momentum estimation

e Adam3: combines aspects of RMSProp and momentum.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70/103

Adam: adaptive momentum estimation

e Adam3: combines aspects of RMSProp and momentum.

® Separate moving averages of gradient and squared gradient.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70/103

Adam: adaptive momentum estimation

e Adam3: combines aspects of RMSProp and momentum.
® Separate moving averages of gradient and squared gradient.
e |nitial: my = 0, v; = 0 (typical B; = 0.9, B = 0.999, & = 1073):

my = Simy_1 + (1 — f1)g:
v = Bovi1 + (1 — Bo)g;

m; =my/(1 -G (bias correction due to mg = 0)
0y = vy /(1 — Bh) (bias correction due to vy = 0)
my

0111 =60, —«a (component-wise)

VU + €

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70/103

Adam: adaptive momentum estimation

e Adam3: combines aspects of RMSProp and momentum.
® Separate moving averages of gradient and squared gradient.
e |nitial: my = 0, v; = 0 (typical B; = 0.9, B = 0.999, & = 1073):

m; = fimy—1 + (1 — B1)g:
v = Bovi1 + (1 — Bo)g;
m; = m/(1— %) (bias correction due to my = 0)
0y = v /(1 — BY) (bias correction due to vy = 0)

A~

my
VU + €

® Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

0111 =60, —«a (component-wise)

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70/103

Adam: adaptive momentum estimation

e Adam3: combines aspects of RMSProp and momentum.
® Separate moving averages of gradient and squared gradient.
e |nitial: my = 0, v; = 0 (typical B; = 0.9, B = 0.999, & = 1073):

m; = fimy—1 + (1 — B1)g:
vy = Bove_1 + (1 — Ba)g;
my = my/(1— B (bias correction due to mg = 0)
0y = v /(1 — BY) (bias correction due to vg = 0)

A~

my
VU + €

® Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

0111 =60, —«a (component-wise)

® Drawbacks: Possible convergence issues with noisy gradient estimates.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)

M. Figueiredo (IST) Deep Learning LxMLS 2025 70/103

Outline

O Convolutional Neural Networks

=] & - = DA
M. Figueiredo (IST) Deep Learning

Convolutional networks (CNN)

® How is a convolutional network different from a standard network?

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 /103

Convolutional networks (CNN)

® How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 /103

Convolutional networks (CNN)

® How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

® Convolutional networks have convolutional layers

M. Figueiredo (IST) Deep Learning LxMLS 2025 72 /103

Convolutional networks (CNN)

® How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

® Convolutional networks have convolutional layers

® How are they different from a fully connected layers?

M. Figueiredo (IST) Deep Learning LxMLS 2025 72/103

Neocognitron (Fukushima, 1982)
. VUGl e st cmsocialion orea
rllm—*LEB—*'dm-Dm-Ml i _"m—m_'o e
e
U

—t modifate synapses

— unmediuble syrupses
Fig. 1. Comespondunce Neod d|= Rierarchy model by [ubel and Wiesel, and the meural netwock of (b neccogsitron

(Hubel and Wiesel, 1965)

Fig. 2. Schematic diagrum illustrating the
|nnen.m|!n:|im|l berween Eyers i the
oty
® Inspired by the multi-stage hierarchy of the visual nervous
M. Figueiredo (IST)

Deep Learning

system

ConvNet (LeNet-5) (LeCun, 1998)

3 F. mags B@10x10
NPT m:hagem 54:1. mags 16@9H5

a2 521, maps
soriie

M. Figueiredo (IST) Deep Learning

Fully connected layer

32x32x3 image -> stretch to 3072 x 1

input
" Wz
1 / 10 x 3072
3072 %
weights

activation

— 1 7

/ 10

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

(Credits: Fei-Fei Li, Johnson, Yeung)

® All activations depend on all inputs.

M. Figueiredo (IST) Deep Learning

LxMLS 2025

75/103

Convolutional layer

® Don't stretch/reshape: preserve the spacial structure!

CO‘nVOIUtlon I—ayer Filters always extend the full
P e depth of the input volume
32x32x3 image //-
5x5x3 filter
32 £
Ii Convolve the filter with the image
’ i.e. "slide over the image spatially,

computing dot products”
32

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 76 /103

Convolutional layer

__— 32x32x3 image
- 5x5xa3 filter w

"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz+b

(Credits: Fei-Fei Li, Johnson, Yeung)

o\
v

Wl

M. Figueiredo (IST) Deep Learning LxMLS 2025 77 /103

Convolutional layer
® Apply the same filter to all spatial locations (28x28 times, why?):

__— 32x32x3 image
V 5x5x3 filter

activation map

PN

@

convolve (slide) over all
spatial locations

(Credits: Fei-Fei Li, Johnson, Yeung)
M. Figueiredo (IST)

Deep Learning

Convolutional layer

® For example, 6 5x5x3 filters yield 6 activation maps:

A-
y.

activation maps

28

Convolution Layer

£

® Stack these up to get a new “image” of size 28x28x6!

w|

6

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 79/103

Image size, filter size, stride, channels

® Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

M. Figueiredo (IST) Deep Learning LxMLS 2025 80/103

Image size, filter size, stride, channels

® Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

® Number of channels: number of filters used in each layer.

M. Figueiredo (IST) Deep Learning LxMLS 2025 80/103

Image size, filter size, stride, channels

® Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

® Number of channels: number of filters used in each layer.

® Given an N x N x D image, F' x F' x D filters, K channels, and
stride .S, the resulting output will be of size M x M x K, where

M=(N-F)/S+1

M. Figueiredo (IST) Deep Learning LxMLS 2025 80/103

Image size, filter size, stride, channels

Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

Number of channels: number of filters used in each layer.

Given an N x N x D image, F x F x D filters, K channels, and
stride .S, the resulting output will be of size M x M x K, where

M=(N-F)/S+1

Examples:

v N=32,D=3, F=5 K=6,5=1results in an 28 x 28 x 6 output
v N=32,D=3, F=5 K=6,5=3results in an 10 x 10 x 6 output

M. Figueiredo (IST) Deep Learning LxMLS 2025 80/103

Image size, filter size, stride, channels

Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

Number of channels: number of filters used in each layer.

Given an N x N x D image, F' x F x D filters, K channels, and
stride .S, the resulting output will be of size M x M x K, where

M=(N-F)/S+1

® Examples:
v N=32,D=3, F=5 K=6,5=1results in an 28 x 28 x 6 output
v N=32,D=3, F=5 K=6,5=3results in an 10 x 10 x 6 output
[]

Padding: append zeros around the images. Common padding size:
(F'—1)/2, which preserves spatial size: M = N.

M. Figueiredo (IST) Deep Learning LxMLS 2025 80/103

CNNs and convolutions
® Why is this called “convolutional”?

® The convolution of a signal x and a filter w, denoted x * w, is:

o0

hlt] = (@ w)t] = > zft —a] wlal.

a=—00

M. Figueiredo (IST) Deep Learning LxMLS 2025 81/103

CNNs and convolutions
® Why is this called “convolutional”?

® The convolution of a signal x and a filter w, denoted x * w, is:

o0

hlt] = (@ w)t] = > zft —a] wlal.

a=—00

® Basic idea: sparse/local connectivity and parameter tying/sharing.

16 parameters 3 parameters

M. Figueiredo (IST) Deep Learning LxMLS 2025 81/103

Convolutions with padding

® Expression above is for infinite-support signal x and filter w.

=] = = = nae
M. Figueiredo (IST) Deep Learning

Convolutions with padding
® Expression above is for infinite-support signal = and filter w.
® Finite support: = = (2[0],...,z[N — 1]); w = (w[—E], ..., w[E])
(F=2E+1)

hlt] = (z xw)[t] = Z wlalz[t —a], fort=E,.,N—1—F

The result has support of size N-1—-FE—-F+1=N—-2E=N—-F+1.

M. Figueiredo (IST) Deep Learning LxMLS 2025 82/103

Convolutions with padding
® Expression above is for infinite-support signal = and filter w.
® Finite support: = = (2[0],...,z[N — 1]); w = (w[—E], ..., w[E])
(F=2E+1)

hlt] = (z xw)[t] = Z wlalz[t —a], fort=E,.,N—1—F

The result has support of size N-1—-FE—-F+1=N—-2E=N—-F+1.

e Padding: append E = (F — 1)/2 zeros at each side of x.

// ””” \:::..._\\
|1|5|1|4l2| * [1[-1]1] = [3]8]-]]
u1|5|1|4|2u * |1| 1Il| = [4]-3]8]-1]2]

(Slide credit to Rob Fergus)

M. Figueiredo (IST) Deep Learning LxMLS 2025 82/103

Convolutions and parameter tying

® Leads to translation/shift equivariance (a form of inductive bias)

Shift
ﬁ.
l Convolution l
—

M. Figueiredo (IST) Deep Learning LxMLS 2025 83/103

Convolutions and parameter tying

® Leads to translation/shift equivariance (a form of inductive bias)

Shift
ﬁ
l Convolution l
—

® Advantages of sharing/tying parameters:

v" Reduces the number of parameters to be learned.
v Allows dealing with arbitrary large, variable-length, inputs.

M. Figueiredo (IST) Deep Learning LxMLS 2025

83/103

Convolutions and parameter tying

® Leads to translation/shift equivariance (a form of inductive bias)

Shift
ﬁ
l Convolution l
—

® Advantages of sharing/tying parameters:

v" Reduces the number of parameters to be learned.
v Allows dealing with arbitrary large, variable-length, inputs.

e Can be used for 1D (signals, text, sequences,...), 2D (images, spatial
distributions, ...), 3D (video, point clouds, ...), even graphs.

M. Figueiredo (IST) Deep Learning LxMLS 2025 83/103

Equivariance and invariance

scall |ng scaling
1 ‘ 4 == ‘
lu wrvalubion lcnn\'nlllticn 1CNN l’.‘.NN

"Cat" — "C(':lt"

Equivariance Invariance

® Pooling layers provide invariance.

M. Figueiredo (IST) Deep Learning LxMLS 2025 84/103

® Makes the representations smaller, more manageable.

® Operates over each activation map (each channel) independently

® Example: max-pooling:

Single depth slice

Pooling layer

% 1112 4
max pool with 2x2 filters
56|78 and stride 2
3 | 2 i
172 (|3 |4
Y

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning

Max pooling: shift invariance

!
3x3 max ooo o
~000 ©
000 O

pooling

o 5 = = £ DA

M. Figueiredo (IST)

Max pooling: shift invariance (1)

CEEON

rax pool with 2x2
fiers and stce 2

ma pool with Zx2
féters and siride 2

[} = - =
M. Figueiredo (IST) Deep Learning

D¢

Max pooling:

rotation invariance

maw pool with B

max poal with 2
1Ex16

filters and siride &

mizm paol with B2

fitters and strick 2

il i podl with 22 S
- fitters and stride & =
_ —_
And
A
Vinllh
=] & - = DA
M. Figueiredo (IST) Deep Learning

Max pooling: scale invariance

ala
ala
5]
a

max pool with B2 max pool with 2«2

filters and stride 2 fiters and siride 2
— _— e O

CHR:
bl
h'lh 16x16
als
s
a
&
max pock with 2x2 max poal with 2x2
filters and stride 2 fikters and stride 2
—% —_—
B | axd
e
b
g £ Bl
16x16

M. Figueiredo (IST) Deep Learning

Multiple convolution filters: feature maps

Different filter for each channel, but keeping spatial invariance

p— Ot puet
axq
— dxqxz
ax3x3 q4x4 s rimdomLoom
(Figure credit: Andrew Ng)
o & = = T 9ac
M. Figueiredo (IST) Deep Learning

ImageNet dataset

14 million labelled images gathered (from the Internet)
22000 hierarchical classes

ImageNet Large Scale Visual

Recognition Challenge (ILSVRC)

Classification: 1,000 object classes, 1.4M /50K /100K images
Detection: 200 object classes, 400K /20K /40K images

S BT BN ST ads I‘“- |

Bl BET AL o A0 4TE
()) () — () —— (U5 — (o) - G

A'EE Sedh SE™ B4 thﬂ
SN FEE s el i . e
™S - IR EE i) mE M

([versdle] — —Ir[crot | (WatereraPt] s Saling vessel | [Salbcat | ———» [Trinar]

M. Figueiredo (IST) Deep Learning LxMLS 2025 91/103

AlexNet (Krizhevsky, Sutskever, Hinton, 2012)

® 54M parameters; 8 layers (5 conv, 3 fully-connected)

Trained on 1.4M ImageNet images

Trained on 2 GPUs for a week (50x speed-up over CPU)

Dropout regularization

Test error: 16.4% (second best team was 26.2%)

ENm
NS

92

128

& S

|~

=

Max 178 Max
pooling pooling

M. Figueiredo (IST) Deep Learning

192

=

i3 |dense

128 Max
pooling

[den

dense

U

204

LxMLS 2025

92/103

GooglLeNet

® GoogleNet inception module: very deep convolutional network, fewer
(5M) parameters

i |= l:
1 1 £
PR s W Tt L
Jlglifilgs 4 181414 i
g gl g g 0188 5y §s =|"ﬂ”
M iliiﬂq |
Convolution
Pooling
Softmax
Other

o = E DA
M. Figueiredo (IST) Deep Learning

Residual networks (ResNets)

® Add skip-connections; tends to lead to more stable learning.

weight layer

Figure 2. Residual learning: a building block.
(He, Zhang, Ren, Sun, 2016)

M. Figueiredo (IST) Deep Learning LxMLS 2025 94 /103

Residual networks (ResNets)

® Add skip-connections; tends to lead to more stable learning.

weight layer

Figure 2. Residual learning: a building block.
(He, Zhang, Ren, Sun, 2016)

e Key (but not the only) motivation: mitigate vanishing gradients.

M. Figueiredo (IST) Deep Learning LxMLS 2025 94 /103

Residual networks (ResNets)

® Add skip-connections; tends to lead to more stable learning.

weight layer

Figure 2. Residual learning: a building block.
(He, Zhang, Ren, Sun, 2016)

e Key (but not the only) motivation: mitigate vanishing gradients.

e With H(x) = F(x) + Az, the gradient back-propagation becomes

OL _ OLOH _ 0L (07
dx OH dx OH\ oz

M. Figueiredo (IST) Deep Learning LxMLS 2025 94 /103

Residual networks (ResNets)

e Very deep network (34 layers here, but up
to 152 layers!)

® VGG-19 (“Visual Geometry Group™”) by
Simonyan and Zisserman (2014); 19 layers.

M. Figueiredo (IST) Deep Learning

Residual networks (ResNets)

(a) without skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filier

(b) with skip connections
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
(Li, Xu, Taylor, Studer, Goldstein, 2018)
or <« - = BINE

Beyond NNs and CNNs

® Qther architectures have been proposed which offer alternatives to
convolutions

® For example: transformers.

® These are somewhat similar to “dynamic convolutions”.

® Covered in another lecture.

M. Figueiredo (IST) Deep Learning LxMLS 2025 97 /103

Visualization

® |dea: Optimize input to maximize particular output

=] = = = nae
M. Figueiredo (IST) Deep Learning

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Visualization

® |dea: Optimize input to maximize particular output
® Depends on the initialization

M. Figueiredo (IST) Deep Learning LxMLS 2025 98 /103

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Visualization

® |dea: Optimize input to maximize particular output
® Depends on the initialization

® Google DeepDream, maximizing “banana” output:

optimize
with prior

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)
M. Figueiredo (IST)

Deep Learning

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Visualization

® |dea: Optimize input to maximize particular output
® Depends on the initialization

® Google DeepDream, maximizing “banana” output:

optimize
with prior

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)
M. Figueiredo (IST)

® Can also specify an inner layer and tune the input to maximize its

activations: useful to see what kind of features it is representing.

Deep Learning

N

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Visualization

® |dea: Optimize input to maximize particular output
® Depends on the initialization

® Google DeepDream, maximizing “banana” output:

optimize
with prior

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

® Can also specify an inner layer and tune the input to maximize its

activations: useful to see what kind of features it is representing.
Specifying a higher layer produces more complex representations...
M. Figueiredo (IST)

Deep Learning

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Adversarial attacks

Can we perturb an input slightly to fool
a classifier?

For example: 1-pixel attacks

Glass-box model: assumes access to the
model

Backpropagate to the inputs to find
pixels which maximize the gradient

There's also work for black-box
adversarial attacks (don't have access
to the model, but can query it).

M. Figueiredo (IST) Deep Learning

AllConv

SHIF
CAR{SS. T

AIRPLAME(S2 4%] DOGIRE. %) EIRD{BG.2%]
DEER BRD SHP
ARPLANE[43.8%] FRDG(BO.ON) ASRFLANEBE.2%)

HORSE SHIF
DOGISLEN} AIPLANE 62 T5) DOG(TE.ZN)

2“

(Credits: Su, Vargas, Sakurai (2018))

LxMLS 2025 99 /103

Even worse: perturb objects, not images

® Print the model of a
turtle in a 3D printer.

o .
Perturbing the t?Xture M classified as turile [classified as rifle
fools the model into B classified as other

thlnkmg It's a I’Iﬂe, Figure 1. Randomly sampled poses of a 3D-printed turtle adver-

regardless of the pose of sarially perturbed to classify as a rifle at every viewpoint®. An
the ObjeCtI unperturbed model is classified correctly as a turtle nearly 100%

of the time.

(Credits: Athalye, Engstrom, llyas, Kwok (2018))

® Neural networks may be very brittle!

M. Figueiredo (IST) Deep Learning LxMLS 2025 100 /103

The anti-detection sweater

Making an Invisibility Cloak: Real World
Adversarial Attacks on Object Detectors

Zuxuan Wul? Ser-Nam Lim®, Larry §. Davis', and Tom Goldstein!?

"University of Maryland, College Park “Facebook Al 2020

M. Figueiredo (IST) Deep Learning LxMLS 2025 101 /103

More to come in upcoming lectures...

We covered only the very basics of deep learning, ...

. much more in upcoming lectures:

® Sequence and language models: Noah Smith
® Transformers and large pre-trained models: Sweta Agrawal

® Deep learning for vision and language: Desmond Elliot

M. Figueiredo (IST) Deep Learning LxMLS 2025 102 /103

Recommended reading

—_—

. DeepLearning

Fousiations
and (o

SIMGN J. B. PRINCE

Springer, 2024

https:ifwww. bishopbook.com/

MIT Press, 2023

hitps:fudlbock. github.iofudibookd
[} = =
M. Figueiredo (IST) Deep Learning

Recommended reading

{ritophe M Bg

SIMGN J. B. PRINCE

. Deeplearning

Springer, 2024

MIT Press, 2023
https:ifwww. bishopbook com/

hitps:fudlbook. github.io/udibookd

Thank you! Questions?

M. Figueiredo (IST) Deep Learning LxMLS 2025 103 /103

