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Deep roots
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Early work on neural networks
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Early machine learning: the Perceptron
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Four decades of evolution
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End-to-end learning
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Deep networks: hierarchy of features
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The ImageNet moment
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The following years
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Also in speech recognition...
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... machine translation,
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... and biology
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Why now? Frictionless reproducibility (Donoho, 2023)
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Neuron model (McCulloch and Pitts, 1943)

• Biological neurons are
hugely more complex.

• Later models replaced
the hard threshold by
more general activation
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Artificial neuron
• Pre-activation (input activation):

z(x) = wTx+ b =

D∑
i=1

wixi + b,

w: connection weights
b: bias

• Activation:

h(x) = g(z(x)) = g(wTx+ b),

where g : R→ R is the activation function.

• Typical activation functions (next): linear (identity); sigmoid (logistic
function); hyperbolic tangent (tanh); rectified linear unit (ReLU).
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Linear activation

g(z) = z
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• No “squashing” of the input.

• Composing linear layers is equivalent to a single linear layer: no
expressive power increase by using multiple layers (but...).
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Sigmoid activation

g(z) = σ(z) =
ez

1 + ez

• Output in [0, 1], can be interpreted as a probability.

• Positive, bounded, strictly increasing.

• Logistic regression corresponds to a network with a single sigmoid unit.

• Combining layers of sigmoid units increases expressiveness (more later).
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Hyperbolic tangent activation

g(z) = tanh(z) =
ez − e−z

ez + e−z
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

• “Squashes” the neuron pre-activation to [−1, +1].

• Related to the sigmoid via σ(z) = 1+tanh(z/2)
2 .

• Bounded, strictly increasing.

• Combining layers of tanh units increases expressiveness (more later).
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Rectified linear unit

g(z) = relu(z) = max{0, z}
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• Non-negative, increasing, but not upper bounded.

• Not differentiable at 0.

• Leads to neurons with sparse activities (arguably closer to biology).

• Very cheap to compute.
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Multi-layer network

• Key idea: use intermediate (hidden) layers between input and output.

• Each hidden layer computes a representation of the input and
propagates it forward.

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Also called feed-forward “neural” network

• Learning the parameters is much harder than in linear models.
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Single hidden layer

• Starting simple:

X several inputs (x ∈ RD);

X single output (e.g. y ∈ R or y ∈ [0, 1])

• Intermediate, hidden, layer of K hidden units (h ∈ RK)
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Single hidden layer

• Hidden layer pre-activation:

z(x) = W (1)x+ b(1),

with W (1) ∈ RK×D and b(1) ∈ RK .

• Hidden layer activation:

h(x) = g(z(x)),

where g : RK → RK is applied
component-by-component.

• Output layer activation: f(x) = o(h(x)Tw(2) + b(2)), where
w(2) ∈ RK and o : R→ R is the output activation function.
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Single hidden layer, single output

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = u, for regression (y ∈ R)

X o(u) = σ(u) for binary classification (y ∈ {±1}, f(x) = P(y = 1 | x))

• Non-linear in x and non-linear in W (1) and b(1)

• h(x) is a learned internal representation (not manually engineered)
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Single hidden layer, multiple outputs

• Overall,

f(x) = o(h(x)Tw(2) + b(2))

= o(w(2)Tg(W (1)x+ b(1)) + b(2))

• Examples:

X o(u) = o, for multiple regression (y ∈ R)

X o(u) = softmax(u) for classification (with C classes)

softmax(u) =

[
exp(u1)∑
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, . . . ,
exp(uC)∑
c exp(uc)

]
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Multiple (L ≥ 1) hidden layers

• Hidden layer pre-activation (define
h(0) = x for convenience):

z(`)(x) = W (`)h(`−1)(x) + b(`),

with W (`) ∈ RK`×K`−1 ; b(`) ∈ RK`

• Hidden layer activation:

h(`)(x) = g
(
z(`)(x)

)
• Output layer activation:

f(x) = o(z(L+1)(x)) = o(W (L+1)h(L)(x) + b(L+1)).
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Universal approximation theorem

Theorem

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

• First proved for the sigmoid case by Cybenko (1989);

• Extended to tanh and many other activation functions by Hornik,
Stinchcombe, and White (1989);

• Caveat: may need exponentially many hidden units.
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Universal approximation: illustration
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Deeper networks

• Deeper networks (more layers) can provide more compact
approximations

Theorem

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

O

((
K
D

)D(L−1)
KD

)

• For fixed K, deeper networks are exponentially more expressive.

• Proved by Montufar, Pascanu, Cho, and Bengio (2014).
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Empirical risk minimization

• Training/learning: choose parameters θ := {(W (`), b(`))}L+1
`=1 by

minimizing the empirical risk, maybe plus a regularizer:

L(θ) =
1

n

n∑
i=1

L(f(xi;θ), yi) + λΩ(θ)

X {(xi, yi), i = 1, ..., n} is a training set

X L(f(xi;θ), yi) is a loss function

X Ω(θ) is a regularizer

X λ is the regularization constant (hyperparameter to be tuned)
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Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks
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Gradient Descent

• Gradient descent algorithm:

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(θt−1)

• Several (many) ways to choose αt;

• Some stopping criterion is used; e.g., ‖∇θL(θt)‖ ≤ δ.
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Gradient descent

• The empirical risk minimization (ERM) objective function:

L(θ) = λΩ(θ) +
1

n

n∑
i=1

L(f(xi;θ), yi)

=
1

n

n∑
i=1

λΩ(θ) + L(f(xi;θ), yi)︸ ︷︷ ︸
Li(θ)

=
1

n

n∑
i=1

Li(θ)

• The gradient:

∇θL(θ) :=
1

n

n∑
i=1

∇θLi(θ)

• Requires a full pass over the data to update the weights: too slow!
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Stochastic gradient descent (SGD)

• Sample one gradient ∇θLi(θ) uniformly at random: j ∈ {1, ..., n}

• This an unbiased estimate of the gradient,

Ej [∇θLj(θ)] =
1

n

n∑
i=1

∇θLi(θ) = ∇θL(θ)

but may be a noisy (high variance) one.

• Stochastic gradient “descent” (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample i ∈ {1, ..., n} at random and choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt∇θL(f(xi;θt−1), yi)
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Visual summary

(Picture by Gabriel Peyré)
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SGD with mini-batches
• Instead of a single sample, use a mini-batch {j1, . . . , jB} (B � n)

• Mini-batch SGD (SGD):

X Start at some initial point θ0 ∈ Rd

X For t = 1, 2, ...,

. sample {j1, ...jB} ⊂ {1, ..., n}; choose step-size αt,

. take a step of size αt in the direction of the negative gradient:

θt = θt−1 − αt
1

B

B∑

i=1

∇θL(f(xji ;θt−1), yji)

• Less noisy, still unbiased
gradient estimate.
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The key Ingredients of SGD

• The loss function L(f(xi;θ), yi);

• A procedure for computing its gradient ∇θL(f(xi;θ), yi);

• The regularizer Ω(θ);

• ... its gradients, ∇θΩ(θ)

Let’s see them one at the time...
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Squared error loss

• The common choice for regression/reconstruction problems

• The goal is to have ŷ = f(x;θ) ≈ y

• Squared error loss:

L(ŷ,y) =
1

2
‖ŷ − y‖2

• Loss gradient:

∂L(ŷ,y)

∂ŷj
= ŷj − yj ⇒ ∇ŷ L(ŷ,y) = ŷ − y

• Notice: this is not (yet) ∇θ L(f(x;θ),y)
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Cross-entropy loss (negative log-likelihood)
• The common choice for classification with a softmax output layer

• NN output: f(x;θ) = softmax
(
z(x;θ)

)
(where z = z(L+1))

• Negative log-likelihood, i.e., cross-entropy loss:

L(f(x;θ), y) = −
∑
c

1(c=y) log fc(x;θ)

= − log
[
softmax(z(x;θ))

]
y

• Intuition: reduce loss ⇒ increase
[
softmax(z(xi;θ))

]
yi

• Loss gradient with respect to output pre-activation zc ≡
[
z(x;θ)

)]
c

∂L(f(x;θ, y))

∂zc
=
[
softmax(z(x))

]
c
− 1(c=y),

• Intuition: ∂L/∂zc ≥ 0, for c 6= y;

∂L/∂zc ≤ 0, for c = y (true class).

• Again, this is not (yet) ∇θ L(f(x;θ),y)
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The Key Ingredients of SGD

• The loss function L(f(xi;θ), yi); X

• A procedure for computing its gradient ∇θL(f(xi;θ), yi); next

• The regularizer Ω(θ);

• ... its gradients, ∇θΩ(θ)
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Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks
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Gradient computation
• Recall the goal: compute ∇θL(f(xi;θ), yi),

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ d h(x)

d x
=
d f(u)

d u

∣∣∣∣
u=g(x)

d g(x)

d x
.

• Example:

∂r(t)

∂t
= ?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t+ 1) + 3t2 = 9t2 + 2t.
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Hidden layer gradient

• Recap: z(`+1) = W (`+1)h(`) + b(`+1)

∂L(f(x;θ), y)

∂h
(`)
j

=
∑
i

∂L(f(x;θ), y)

∂z
(`+1)
i

∂z
(`+1)
i

∂h
(`)
j

=
∑
i

∂L(f(x;θ), y)

∂z
(`+1)
i

W
(`+1)
i,j

• Hence

∇h(`)L(f(x;θ), y) = W (`+1)>∇z(`+1)L(f(x;θ), y).
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Hidden layer gradient (before activation)

• Recap: h
(`)
j = g(z

(`)
j ), where g : R→ R is the activation function.

∂L(f(x;θ), y)

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f(x;θ), y)

∂h
(`)
j

g′(z
(`)
j )

• Hence ∇z(`)L(f(x;θ), y) = ∇h(`)L(f(x;θ), y)� g′(z(`)).

• What are the activation function derivatives g′(z(`))?
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Linear activation

g(z) = z

Derivative:

g′(z) = 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

M. Figueiredo (IST) Deep Learning LxMLS 2025 48 / 103



Sigmoid activation

g(z) = σ(z) =
1

1 + e−z

Derivative:

g′(z) = g(z)(1− g(z))
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0.0

0.2

0.4

0.6
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Hyperbolic tangent activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

Derivative:

g′(z) = 1− g(z)2 = sech2(x)
-3 -2 -1 0 1 2 3
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0.0

0.5

1.0
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Rectified linear unit activation

g(z) = relu(z) = max{0, z}

Derivative (except for z = 0):

g′(z) = 1z>0
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Parameter gradient

• Recap: z(`) = W (`)h(`−1) + b(`).

∂L(f(x;θ), y)

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W
(`)
i,j

=
∂L(f(x;θ), y)

∂z
(`)
i

h
(`−1)
j

• Hence ∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)h(`−1)>

• Similarly, ∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)
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Backpropagation

Compute output gradient (before activation):

∇z(L+1)L(f(x;θ), y) = f(x)− 1y

for ` from L+ 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y) h(`−1)>

∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f(x;θ), y) = W (`)>∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f(x;θ), y) = ∇h(`−1)L(f(x;θ), y)� g′(z(`−1))

end for
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The computation graph view

• Forward propagation can be represented as a
DAG (directed acyclic graph).

• Allows implementing forward propagation in a
modular way.

• Each box can be an object with a fprop

method, which computes the output of the box
given its inputs.

• Calling the fprop method of each box in the
right order yields forward propagation.
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Automatic differentiation (Autodiff)

• Backpropagation is also implementable in a
modular way.

• Each box should have a bprop method, which
computes the loss gradient w.r.t. its parents,
given the loss gradient w.r.t. to the output.

• Can make use of cached computation done
during the fprop method

• Calling the bprop method in reverse order
yields backpropagation
(only needs to reach the parameters)
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Many software toolkits for deep learning

• Tensorflow

• Torch

• Pytorch

• MXNet

• Keras

• JAX

• ...

All implement automatic differentiation.
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The key ingredients of SGD

• The loss function L(f(xi;θ), yi); X

• A procedure for computing its gradient ∇θL(f(xi;θ), yi); X

• The regularizer Ω(θ); next

• ... its gradients, ∇θΩ(θ). next
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Regularization

• Objective function to be minimized:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f(xi;θ), yi)

• We will next focus on the regularizer and its gradient

• We will study:

X `2 regularization (weight decay);

X `1 regularization (LASSO-type);

X dropout regularization, which doesn’t have the form above.
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`2 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
1

2

L+1∑
`=1

‖W (`)‖22

• Equivalent to a Gaussian prior on the weights

• Gradient of this regularizer is: ∇W (`)Ω(θ) = W (`)

• Weight decay effect

W (`) ← W (`) − η∇W (`)Li(θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f(xi;θ), yi))

= (1− ηλ)︸ ︷︷ ︸
<1

W (`) − η∇W (`)L(f(xi;θ), yi)
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`1 regularization

• The biases b(1), ..., b(L+1) are not regularized; only the weights:

Ω(θ) =
∑
`

‖W (`)‖1 =
∑
`

∑
ij

|W (`)
ij |

• Equivalent to Laplacian prior on the weights

• Gradient is: ∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights
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Dropout regularization

During training, remove some hidden units, chosen at random

Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014).
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Dropout regularization

• Each hidden unit output is set to 0 with probability p (e.g. p = 0.3)

• Prevents hidden units from co-adapting to other units, forcing them
to be more generally useful.

• Most common choice: inverted dropout: the output of the units that
were not dropped is divided by 1− p

• This ensures that the expected value of the output remains the same
during training and inference.
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Backpropagation with dropout

Compute output gradient (before activation):

∇z(L+1)L(f(x;θ), y) = −(1y − f(x))

for ` from L+ 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y) h(`−1)>︸ ︷︷ ︸
includes mask m(`−1)

∇b(`)L(f(x;θ), y) = ∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f(x;θ), y) = W (`)>∇z(`)L(f(x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f(x;θ), y) = ∇h(`−1)L(f(x;θ), y)� g′(z(`−1))�m(`−1)

end for
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Tricks of the trade: Initialization

• Biases: initialize at zero

• Weights:

X Cannot initialize to zero with tanh activation (gradients would also be
all zero and we would be at saddle point)

X Cannot initialize the weights to the same value (need to break the
symmetry)

X Random initialization (Gaussian, uniform), sampling around 0 to break
symmetry, or ‘Glorot initialization” (Glorot and Bengio, 2010)

W
(`)
i,j ∼ U [−t, t], with t =

√
6√

K(`) +K(`−1)

X For ReLU activations, the mean should be a small positive number
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More tricks of the trade

• Hyperparameter tuning (just use Optuna)

• Normalization of the data

• Decaying the learning rate

• Mini-batches size

• Adaptive learning rates

• Gradient checking

• Debug on small datasets
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Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks
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Momentum

• Momentum: remember the previous step, combine it in the update:

θt = θt−1 − αtg(θt−1) + γt(θt−1 − θt−2);

g(θt) is the gradient estimate (batch, single sample, minibatch).

• Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.
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Adaptive gradient (AdaGrad)

• AdaGrad1: use separate step sizes for each component θj,t of θt.

• Scale the update of each component (ε for numerical stability)

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• where Gj,t accumulates all the squared gradient values in component t

Gj,t =

t∑
t′=1

(
gj(θt′)

)2
= Gj,t−1 +

(
gj(θt)

)2
• Advantages: robust to choice of α and to different parameter scaling.

• Drawbacks: step size vanishes, because Gj,t ≥ Gj,t−1.

1J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011
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Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2

• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Root Mean Square Propagation (RMSProp)

• RMSProp2 addresses the vanishing learning issue.

• Same scaled update of each component

θj,t = θj,t−1 −
α√

Gj,t−1 + ε
gj(θt−1)

• Use a forgetting/decay factor γ (typically 0.9),

Gj,t = γ Gj,t−1 + (1− γ)
(
gj(θt)

)2
• Now, Gj,t may be smaller than Gj,t−1.

• Advantages: robust to choice of α (typically 0.01 or 0.001); robust to
different parameter scaling.

2Presented by G. Hinton in a Coursera lecture.
M. Figueiredo (IST) Deep Learning LxMLS 2025 69 / 103



Adam: adaptive momentum estimation

• Adam3: combines aspects of RMSProp and momentum.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical β1 = 0.9, β2 = 0.999, α = 10−3):

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t
m̂t = mt/(1− βt1) (bias correction due to m0 = 0)

v̂t = vt/(1− βt2) (bias correction due to v0 = 0)

θt+1 = θt − α
m̂t√
v̂t + ε

(component-wise)

• Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues with noisy gradient estimates.

3D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 220000 citations)
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Outline

1 Brief History of Deep Learning (Before LLMs)

2 From models of neurons to artificial neural networks

3 Deep Learning via Empirical Risk Minimization

Gradient Descent and Stochastic Gradient Descent

Gradient Backpropagation and Autodiff

Better optimization: momentum, AdaGrad, RMSProp, Adam

4 Convolutional Neural Networks
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Convolutional networks (CNN)

• How is a convolutional network different from a standard network?

...it is just a NN with a special connectivity structure

• Convolutional networks have convolutional layers

• How are they different from a fully connected layers?
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Neocognitron (Fukushima, 1982)

• Inspired by the multi-stage hierarchy of the visual nervous system
(Hubel and Wiesel, 1965).
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ConvNet (LeNet-5) (LeCun, 1998)
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Fully connected layer

(Credits: Fei-Fei Li, Johnson, Yeung)

• All activations depend on all inputs.
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Convolutional layer

• Don’t stretch/reshape: preserve the spacial structure!

(Credits: Fei-Fei Li, Johnson, Yeung)
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Convolutional layer

• Apply the same filter to all spatial locations (28x28 times, why?):

(Credits: Fei-Fei Li, Johnson, Yeung)
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Convolutional layer

• For example, 6 5x5x3 filters yield 6 activation maps:

(Credits: Fei-Fei Li, Johnson, Yeung)

• Stack these up to get a new “image” of size 28x28x6!
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Image size, filter size, stride, channels

• Stride: shift in pixels between two consecutive windows. In the
previous illustrations, stride = 1.

• Number of channels: number of filters used in each layer.

• Given an N ×N ×D image, F × F ×D filters, K channels, and
stride S, the resulting output will be of size M ×M ×K, where

M = (N − F )/S + 1
• Examples:

X N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output
X N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

• Padding: append zeros around the images. Common padding size:
(F − 1)/2, which preserves spatial size: M = N .
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CNNs and convolutions

• Why is this called “convolutional”?

• The convolution of a signal x and a filter w, denoted x ∗ w, is:

h[t] = (x ∗ w)[t] =

∞∑
a=−∞

x[t− a] w[a].

• Basic idea: sparse/local connectivity and parameter tying/sharing.
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Convolutions with padding

• Expression above is for infinite-support signal x and filter w.

• Finite support: x = (x[0], ..., x[N − 1]); w = (w[−E], ..., w[E])
(F = 2E + 1)

h[t] = (x ∗ w)[t] =

E∑
a=−E

w[a]x[t− a], for t = E, ..., N − 1− E

The result has support of size N − 1−E −E + 1 = N − 2E = N −F + 1.

• Padding: append E = (F − 1)/2 zeros at each side of x.

(Slide credit to Rob Fergus)
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Convolutions and parameter tying

• Leads to translation/shift equivariance (a form of inductive bias)

• Advantages of sharing/tying parameters:

X Reduces the number of parameters to be learned.
X Allows dealing with arbitrary large, variable-length, inputs.

• Can be used for 1D (signals, text, sequences,...), 2D (images, spatial
distributions, ...), 3D (video, point clouds, ...), even graphs.
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Equivariance and invariance

• Pooling layers provide invariance.
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Pooling layer

• Makes the representations smaller, more manageable.

• Operates over each activation map (each channel) independently

• Example: max-pooling:

(Credits: Fei-Fei Li, Johnson, Yeung)

M. Figueiredo (IST) Deep Learning LxMLS 2025 85 / 103



Max pooling: shift invariance
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Max pooling: shift invariance (II)
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Max pooling: rotation invariance

M. Figueiredo (IST) Deep Learning LxMLS 2025 88 / 103



Max pooling: scale invariance
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Multiple convolution filters: feature maps

• Different filter for each channel, but keeping spatial invariance:

(Figure credit: Andrew Ng)
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ImageNet dataset
• 14 million labelled images gathered (from the Internet)
• 22000 hierarchical classes
• ImageNet Large Scale Visual
• Recognition Challenge (ILSVRC)
• Classification: 1,000 object classes, 1.4M/50K/100K images
• Detection: 200 object classes, 400K/20K/40K images
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AlexNet (Krizhevsky, Sutskever, Hinton, 2012)

• 54M parameters; 8 layers (5 conv, 3 fully-connected)

• Trained on 1.4M ImageNet images

• Trained on 2 GPUs for a week (50x speed-up over CPU)

• Dropout regularization

• Test error: 16.4% (second best team was 26.2%)
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GoogLeNet

• GoogLeNet inception module: very deep convolutional network, fewer
(5M) parameters
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Residual networks (ResNets)

• Add skip-connections; tends to lead to more stable learning.

(He, Zhang, Ren, Sun, 2016)

• Key (but not the only) motivation: mitigate vanishing gradients.

• With H(x) = F(x) + λx, the gradient back-propagation becomes

∂L

∂x
=
∂L

∂H

∂H

∂x
=
∂L

∂H

(
∂F

∂x
+ λ

)
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• With H(x) = F(x) + λx, the gradient back-propagation becomes

∂L

∂x
=
∂L

∂H

∂H

∂x
=
∂L

∂H

(
∂F

∂x
+ λ

)
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Residual networks (ResNets)

• Very deep network (34 layers here, but up
to 152 layers!)

• VGG-19 (“Visual Geometry Group”) by
Simonyan and Zisserman (2014); 19 layers.
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Residual networks (ResNets)

(Li, Xu, Taylor, Studer, Goldstein, 2018)
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Beyond NNs and CNNs

• Other architectures have been proposed which offer alternatives to
convolutions

• For example: transformers.

• These are somewhat similar to “dynamic convolutions”.

• Covered in another lecture.
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Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify an inner layer and tune the input to maximize its
activations: useful to see what kind of features it is representing.

• Specifying a higher layer produces more complex representations...
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Adversarial attacks

• Can we perturb an input slightly to fool
a classifier?

• For example: 1-pixel attacks

• Glass-box model: assumes access to the
model

• Backpropagate to the inputs to find
pixels which maximize the gradient

• There’s also work for black-box
adversarial attacks (don’t have access
to the model, but can query it).

(Credits: Su, Vargas, Sakurai (2018))
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Even worse: perturb objects, not images

• Print the model of a
turtle in a 3D printer.

• Perturbing the texture
fools the model into
thinking it’s a rifle,
regardless of the pose of
the object!

(Credits: Athalye, Engstrom, Ilyas, Kwok (2018))

• Neural networks may be very brittle!
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The anti-detection sweater
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More to come in upcoming lectures...

We covered only the very basics of deep learning, ...

... much more in upcoming lectures:

• Sequence and language models: Noah Smith

• Transformers and large pre-trained models: Sweta Agrawal

• Deep learning for vision and language: Desmond Elliot
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Recommended reading

Thank you! Questions?
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