_/\\4| S

2025

The Search for Foundations in Al
Interpretability

Maxime Peyrard

e

@



Why Explain?



Practical Reasons

Transparency, Trust @

@ Accountability, Legal Compliance

K=

Error Diagnostic, Continuous Improvement, Robustness @@

Z<
=

1] Communication, Education, Human-AlI collaboration



Scientific Question: Explaining Complex Systems
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Interpretability research

Neutral conditions _ . .
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What should be explained? What is an explanation? What is a valid
explanation?

How to go from observations to valid explanations?



Als are the Simplest Complex Systems to Study

Testing the Tools of Systems Neuroscience on Artificial Neural
Networks

Grace W. Lindsay

Al are fully observable
and manipulable

What does it mean to understand a neural network?

Timothy P. Lillicrap & Konrad P. Kording

Forms of explanation and understanding for neuroscience and artificial
intelligence

Jessica A. F. Thompson Contributions and challenges for network models in

cognitive neuroscience

Olaf Sporns &




How to Explain?



Behavioral Testing

Inputs
outputs
inspection

Carefully craft inputs, measure effects on outputs, come-up with hypothesis

High-level explanation 12



Benchmarking

Results: Test

Model name

Multi-Agent Experiment v0.1

MAAC_V1
FRIDAY

FRIDAY without_learning

DIP

Chamomile

GPT4 + manually selected plu;
Clarity vi

Warm-up. Act

stealth3

stealth2

stealth

Average score (%) Level 1 score (%) Level 2 score (%) Level 3 score (%) organisation

32.33 47.31 28.93 14.58

2
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GAIA Leaderboard

Model family

MSR AI Frontiers GPT-4-turbo

& Open LLM Leaderboard

¥ LLM Benchmark ~ Metrics through time =» About ! FAQ o7 Submit

¥’ LMSYS Chatbot Arena Leaderboard

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

L Search for your model (separate multiple queries w

Select columns to show

Average &3 ARC HellaSwag
Winogrande GSM8K Type Arena Elo
Merged Hub License #Params§  Total #models: 76. Total #votes: 511252. Last updated: March 29, 2024.

Hide models

Private or deleted Contains a merge/md

. . Arena ul 95%
Rank Model
“ Elo c1
T 4 Model 1 Claude. 3. Opus 1255 +3/-4
v davidkim205/Rhea:72b-v0.5 X .
1 GPT-4-1106-preview 1252 +3/-3
Contamination/contaminated_proof
1 GPT-4-0125-preview 1249 +3/-4
MTSAIR/MultiVerse 70B %
) 4 Bard. (Gemini. Pro) 1204 +5/-5
v MTSAIR/MultiVerse 70B %
SE-Foundation/Ein-72B-v0.11 4 Claude 3. Sonnet 1200 +3/-4
6 GPT-4-0314 1185 +4/-4
7 Claude 3 Haiku 1177 +3/-4
8 GPT-4-0613 1160 +3/-5

Contribute your vote & at chat.Imsys.org! Find more analysis in the notebook.

@ Votes

37663

56936

38105

12468

40389

35803

26773

54509

Organization

Anthropic
OpenAIl
OpenAl
Google
Anthropic
OpenAIl
Anthropic

OpenAl

License

Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary
Proprietary

Proprietary

LMSYS Chatbot Arena is a crowdsourced open platform for LLM evals. We've collected over 500,000 human preference votes to rank LLMs with the Elo ranking system.

Knowledge
Cutoff

2023/8
2023/4
2023/12
Online
2023/8
2021/9
2023/8

2021/9
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Controlled Setups

Idea: controlled transformation of the inputs, and measure effects on outputs

Input A \ / Output A
Transformation I Effect
Input B / Output B
Evaluating Models’ Local Decision Learning What Makes a Difference from
Boundaries via Contrast Sets Counterfactual Examples

EMNLP 2020 ECCV 2021

14



Controlled Setups - Examples

Noisy Exemplars Make Large Language Models More Robust: Prompt Bench: Towards Evaluating the Robustness of Large
A Domain-Agnostic Behavioral Analysis Language Models on Adversarial Prompts
Hongyi Zheng Abulhair Saparov Kaijie Zhu?* Jindong Wang'{ Jiaheng Zhou?, Zeek Wang', Hao Chen?, Yidong Wang?,
New York University New York University Linyi Yang®, Wei Ye!, Yue Zhang®, Neil Zhengiang Gong®, Xing Xie!
hz2212@nyu. edu as17582@nyu. edu Microsoft Research  2Institute of Automation, CAS 3Carnegie Mellon University

4Peking University ®Westlake University —®Duke University

A Prompt Sample o

. o . . . -
Natalia sold 48 clips in April. She sold 48 = 2 = 24 clips in Review this statement and decide whether it it's slow - very , || user1
Then she sold half as many _ May, so she sell 48 + 24 = 72 has a "positive' or 'negative' sentiment: very slow .

clips in May. How many clips
did Natalia sell altogether?

clips altogether.

tﬂ; [ Negative. o ]
(Pefurbedy —

] e - Prompt S l
Natalia sold 48 clips in April. P ampie
A i i i it ' ==
Ill'i]e;l iihhago'%?:;f:r?enggﬂiy %\\—@; She sold 48 + 2 + 2 = 12 clips f‘\l}aly?e thls a'sser'tlon apd 'defml.ng w?lether it's slclyw very , | |yser2
haFI)f - mar):'y e M in May, so she sell 48 + 12 = it is a 'positive' or 'negative' sentiment: very slow .

How many clips did Natalia 60/clips altogether.

sell altogether? x "%:, [ Postive. €9 ]
aao

(b) Synonyms lead to errors in sentiment analysis problems.
15



Input Feature Attributions

\
L Y

-Q: controlled changes on the input features = effects on output
'4

LIME: local approximation of the boundary around
an input

SHAP: measure each feature contribution relative
to others

Integrated Gradient: use the gradient information
backpropagated in the input features

16



Problem with Feature Attributions

SSIM: Inception v3 - ImageNet
[ . .
— Pladne = Sanity Checks for Saliency Maps
Shahal 1 1 iy Sl DM
n\. — °
'N._(
Julius Adebayo; Justin Gilmer?, Michael Muelly?, Ian Goodfellow!, Moritz Hardt!!, Been Kim"
juliusad@mit.edu, {gilmer ,muelly,goodfellow,mrtz,beenkim}@google.com
#Google Brain
TUniversity of California Berkeley
T T T T T T T T T T T T T T T
TLNEREBEEERRA2RRES
=) R L e U TR E R i i
= v 0o 0V O O 0 OV VU U U O NN NN
e} X X X X X X X X X XX 2> 2> 2 2
= = =Z=Z =T 2= =Z =2 = 3 : ] 3
$888S Similar feature attributions for

randomly initialized networks
compared to trained ones

18






Neuroscience detour |
{Input} =— ." —p {Output}

/ \
¢ \

VISION Perspectives on cognitive neuroscience

P S Churchland 1, T J Sejnowski

IReview Article Published: 12 June 2008

What we can do and what we cannot do with fMRI

INikos K. Logothetis &

Neural representation and the cortical code

Nature 453, 869-878 (2008) | Citd

R C deCharms 1, A Zador

Behavior is not enough; we have to look at the computation to
find objective, measurable, and generalizable predictors 20






Behavior vs Computation

_______________________________________________________________________________________

=~ . Camel
0]©)
Cow
Inputs
outputs Came ]

inspection .

______________________________________________________________________________________

m

‘ M
\‘i \‘f

High-level explanation But is it consistent with the low—level implementation?

22



How to Explain?



77

“Neural Correlates

Study patterns
of activations

~
S
<
B,
S
~
-~

24



1

irica

Sat

Serious

Laughing Heads: Can Transformers Detect What Makes a Sentence Funny?

Maxime Peyrard, Beatriz Borges, Kristina Gligori¢ and Robert West
EPFL

[City opens new art]{jail}

4 4
Non-modified Modified chunk
chunk in funny in funny
Matched
comparison
[City opens new art ]{museum}
4 4
Non-modified chunk Modified chunk
in serious in serious

26



Modified chunk
in funn

Layers

121110 9 8 76 54 3 2 1

o | | [ [ [ ]

. AN

HNNEENEN
HEEEENNN
HE B NN
HEE. . NEEN
IIIIIE!I
4567891011

Heads

Laughing Heads

Non-modified Modified chunk
chunk in funn in serious

Non-modified

chunk in serious
EEEEEEEEEEEN

~VU.ZU

-0.15

0.10

0.05

0.00

Surprisingly, one head attends a lot to modified chunk in funny sentence

and only in this case

27



Inputs

SVCCA: Singular Vector Canonical Correlation
Analysis for Deep Learning Dynamics and
Interpretability

Maithra Raghu,'-? Justin Gilmer,' Jason Yosinski,? & Jascha Sohl-Dickstein'
1Google Brain ?Cornell University Uber AI Labs

Activations
Layer A

Compare layer to layer
similarity with CCA

Activations
Layer B

28



SV-CCA

Redundant layers appearing during training > possibilities for pruning

0% trained 35% trained 75% trained 100% trained
HEEEE ‘ ‘ ||

Convnet, CIFAR-10
layer (during training)

Resnet, CIFAR-10

layer (during training)

la.yer (end ef tralmng) la.yer (end 0f trammg) layer (end of tralmng) la.yer (end of trammg)

waighed svooa scae

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

29



Probes

Activations

&

-
A model f that reliably predict some

behavior labels from activations

Inputs
sToqeT

30



Example of Probing: Linguistic Features

Probing Linguistic Features of Sentence-Level

Representations in Neural Relation Extraction
ACL 2020

Labels: linguistic features

O R’
Sentence Encoder O~ @ Relation
! Classifier
11 N o ..
'O 'O @) fe} s PO
eV g g L e ¥ o8
O O Q! Q@ T & O
o) 0! o o |
= P Py g h (type tail) . .
g o o o @ " Use the activations
=3 = 3 = Probing IZ> T -
ot O O o O . Classifier to predict linguistic
O O [} O T o faat
[..] included Aerolineas [..] subsidiary Austral &£ & & eatures

31



& Problems with Probing &

Probing the Probing Paradigm:
Does Probing Accuracy Entail Task Relevance?

Abhilasha Ravichander’  Yonatan Belinkov?* Eduard Hovy'
ILanguage Technologies Institute, Carnegie Mellon University
2Technion — Israel Institute of Technology

Probing Classifiers: Promises, Shortcomings,
and Advances

Yonatan Belinkov*
Technion - Israel Institute of Technology

An information theoretic view on selecting linguistic probes

Zining Zhu'?, Frank Rudzicz>* '
! University of Toronto, ? Vector Institute, ® Surgical Safety Technologies
4 Li Ka Shing Knowledge Institute, St Michael’s Hospital

35






Neuroscience detour |l
{Input} =—p ..’ —p {Output}

/ \
/ \

Representation, Pattern Information, and Brain Signatures:

From Neurons to Neuroimaging

Very common to do “Probing” on brain activations: “mutivariate
pattern analyses’, “brain signatures’, ...

37



Patient

The Dead Salmon

Magnet  Gradient Coils

Radio Frequency Coil

Scanner

25

r-value

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon:
An argument for multiple comparisons correction
Craig M. Bennett!, Abigail A. Baird2, Michael B. Miller', and George L. Wolford3

The lure of misleading causal statements in functional connectivity research

David Marc Anton Mehler, Konrad Paul Kording

38







Neural correlates fall short

Predicting is not understanding — correlations are everywhere and do not generalize

behavior Observed patterns

=P Camel

Do the observed patterns explain the behavior?

Predicting is not Understanding:

Damien Teney!? Maxime Peyrard?> Ehsan Abbasnejad?®

Sparse Autoencoders Can Interpret Randomly Initialized Transformers

Thomas Heap, Tim Lawson, Lucy Farnik, Laurence Aitchison 40




How to Explain?



| - Causal Models

{Input} =—p .l’ -——p {Output}

Why?

Philosophers of Science argue that explanations must be causal analyses

"causes explain their effects »

- Understanding: know the behavior in any scenario
- Control: know the impact of modifications on the system

43



Property
(POS)

Amnesic probing: Validating with Interventions

<

Probe

{ verb noun del r

t -

standard probing

Behavior

amnesic probing

|

I"\ p—POS

/ ran

T

|

Amnesic
i (Remove POS)
Operation

L

Task
>(LM)

|

T

the

dog

ran

Amnesic Probing: Behavioral Explanation with Amnesic Counterfactuals

Yanai Elazar'? Shauli Ravfogel!'> Alon Jacovi! Yoav Goldberg'?
!Computer Science Department, Bar Ilan University
2 Allen Institute for Artificial Intelligence

Does modifying the activation to fool the
probe, removes the behavior?

44



Causal mediation analysis

Goal: Understand the impact of model components on model behavior

The Eiffel Tower isin

—— — —— — — — — — — — — —

\\| the
|
B, Softmax | Eiffel
|
O Activation states;
| Tower
|
O Attention |
| is
& MLP E
/ in

—— — — — — — — — — ——— —

~"
— N —

ST T

T ReTteT

TIST T

ST ELoT

LT T

Predicted

?} token: Paris

ﬁ What is the
effect of this

component on

L]

the
prediction?

45



-

Causal Mediation Analysis

Indirect effect,
mediated by M

Direct effect
of XonY

How much of the effect of X on Y is explained by the path through M?

v

. disentangling the different paths of influences.

‘Q. i.e., understanding the mechanisms by which X acts on,
'4

46



Prompt u:

Examples — Gender Bias

The nurse said that

Stereotypical candidate: she

Anti-stereotypical candidate: he

(a) Causal mechanism

Ynull

w R w

nurse

(b) Total Effect

/\

nurse

man

Apply set-gender

AUFrse man

(c) Direct Effect

set gender

/\

nurse

man

Causal Mediation Analysis for Interpreting
Neural NLP: The Case of Gender Bias

NeurIPS 2020

Neuron

@ Head Effect
H——0 2
0.045 -
Text Edit Output ©
0.030 q; ©
(d) Indirect Effect < H

0.015 N -
S T ~
0.000 o

Layer Effect

-

0 2 4 6 8 10

nurse nurse

00 0.1

50



Examples — factual recall

Transformer Feed-Forward Layers Are Key-Value Memories
Locating and Editing Factual Associations in GPT

Mor Geva'?  Roei Schuster'®  Jonathan Berant'?  Omer Levy'
'Blavatnik School of Computer Science, Tel-Aviv University

vi . vid Bau* x i inkov' 2 - . e . X
e s Nonhgztcﬁllﬁniversity Aler Andoman  Yonatan Belinko Allen Institute for Artificial Intelligence
*Cornell Tech
(f) Impact of restoring MLP after corrupted input A Glitch in the Matrix?
The* 1 0.8 Locating and Detecting Language Model Grounding with Fakepedia
Space® -
Need* - early site 0.6 Giovanni Monea,® Maxime Peyrard,v Martin Josifoski,® Vishrav Chaudhary,‘
le* 4 - L 04 Jason Eisner,‘ Emre chlman," Hamid Palangi," Barun Patra,‘ Robert West®
is ' °EPFL  YUniv. Grenoble Alpes, CNRS, Grenoble INP, LIG *Microsoft Corporation
in 1 - 0.2 |
downtown - . . .
0 5 10 15 20 25 30 35 40 p(Seattle Facts are localized in few MLPs that

center of interval of 10 restored MLP layers

are associative memories for factual

knowledge
High causal effect on the prediction in early sites

=> due to the activity of few MLPs 51



Mechanistic Interpretability

Idea: Reverse-engineer trained neural networks to find simple, human-
interpretable, algorithms embedded in the computation

Base 1. Circuit 2. Interpret
Neural Network components

52






Neuroscience detour Il

{Input} =—p .I‘ -—p {Output}

/
/ \

How do we know that our explanations are correct?

How can we trust our analysis methods if we never test on examples of behavior / true
explanations

55



Neuroscience detour

RESEARCH ARTICLE S —
Could a Neuroscientist Understand a 'gs

: 4
Microprocessor?

Eric Jonas'*, Konrad Paul Kording®®

We know everything about the microprocessor,
Let’s treat it as if it was a brain (where transistor = neurons)

Can analysis methods recover meaningful information about the
microprocessor even with perfect observations and manipulation capabilities?

NO

56



Neuroscience detour

Lesions which impact single behavior

Lesion site vs behavior." © 17 90 ®7T 0T Mg L e

al B R D e

(N | . SR e
AV

Even extensive intervention A T R bk _“_1 000um
Study glves nO USEfUI Fig 4. Lesioning every single transistor to identify function. We identify transistors whose elimination

disrupts behavior analogous to lethal alleles or lesioned brain areas. These are transistors whose elimination
ln f O rm atl On | results in the processor failing to render the game. (A) Transistors which impact only one behavior, colored by
. behavior. (B) Breakdown of the impact of transistor lesion by behavioral state. The elimination of 1565
transistors have no impact, and 1560 inhibit all behaviors.






MI is not the end of the story

Everything, Everywhere, All at Once: Is Mechanistic
Interpretability Identifiable?

Maxime Méloux, Silviu Maniu, Francois Portet, Maxime Peyrard ®

We can find almost any explanation if we look hard enough
Even in randomly initialized neural networks

“High-dimensional nonlinear systems may be hard to understand, but they are easy to
find stories in” - Grace W. Lindsay = un-identifiable

61



The Two Types of Ml approaches

Human input input: img

e N
Algorithm (what)
Distributed Alignment Search

Neural network

) X = count edges(img)

y = count corners(img)
is_rect = (x ==y == 4)
output: is rect

- J

Metric: Intervention Interchange Accuracy

A 4

Explanation

input: img
__________________ x = count edges(img)
y = count corners(img)
is rect = (x ==y == 4)
output: is rect

A

What-then-where

Where-then-what

~
)

Circuit (where

Causal Mediation Analysis Activation Maximization
Metric: Circuit Error Metric: Mapping Consistency

62



Experimental Setup

Base Neural Network
Train an MLP to implement XOR Toy exercise in interpretability:

» What sequence of logic gates is
implemented by the MLP?

* Where in the network is each gate
implemented?

Enumerate exhaustively all candidate
algorithms and mappings and test them with
existing criteria.

A=0[1+N(0,E)
B = 0|1+ N(0,€)
C = round(A4) & round(B)

64



Where-then-\What is not Identifiable

Do the current criteria used for selecting circuits and their grounding induce a
unique solution? NO

Base Neural Network 85 unique circuits with perfect 25 unique explanations with

accuracy exact grounding for one circuit

DO ©
" C — © ©
B O
D ©
A=0|1+N(0,E) D ©

B = 0|1+ N(0,€) D)
C = round(A4) & round(B)

Train an MLP to implement XOR



What-then-where is not Identifiable

Do the current criteria used for assessing causal alignment of an explanatory
algorithm guarantee a unique solution? NO

Example of 2 perfect mappings for one

] 41
@ [ dlg O@'ILIIIT 1 @

@@

Base Neural Network

Train an MLP to implement

A
C
B O
A=0|1+N(0,E) @
B =0|1+N(0,8)
C
= round(4) @ round(B) 159 perfect mappings

(I1A=1)

67



|dentifiability Issues — Generalization Issues

Behavior: Many explanations compatible with observed
behavior. Which one matches the computation?
(Which one generalizes?)

P ." P oo Computational Correlate: Many causal mechanisms
5 compatible with observed correlations. Which one
7057
behavior Observed generalizes:
patterns

P ( ." =P Camel | d 0 %ﬁ ) Computational Causal Mechanisms: Many

causally aligned explanations!! (Which one

Model perturbed generalizes?)

behavior patterns -



What to do?



Instrumentalism: Statistical (Causal) Inference on
computational data

Distribution over computational traces Target property of interest
(estimand)

O

el
~
~

. ~
Estimator_ ~

P
P
P
e

Usual questions:
- Estimand properties (e.g., identifiability)
- Estimators' properties:

Bias, variance, consistency, ...
- Distributional properties:
Generalization, uncertainty .,




Computational Summarization aka Causal Abstraction

(Constructive ) Abstraction map T
.I‘

Coarse-Graining map a Value maps: ty: a1 (X) = X X.
2 .
X o . Abstracting Causal Models
———————— 0
- ~— . - _ c
PP a '(Xo) () .
al(0)i ) RN ey 0 - b Sander Beckers Joseph Y. Halpern
S - - . a =
N A -1 ™ -1 O
a (Xz_)__ L X, X 0 1 a " (X5) ~O%
T : T T T T T T T . - R |
S < N a (X))l ) ——mm—
14 L Oater) %) DX, )i
= el T N Causal Abstraction:
a (D) T ¥ 0 0 1 _ . A Theoretical Foundation for Mechanistic Interpretability
T - ———— a_i (U) L’;\.] __ ﬂ_l U) J s Atticus Geiger*®, Duligur Ibeling®, Amir Zur®, Maheep Chaudhary®,
o Sonakshi Chauhan®, Jing Huang®, Aryaman Arora®, Zhengxuan Wu®,
Specifies which micro-variable maps to Specifies how the micro-states (values of the micro-variables) [Noah Goodman®, Christopher Potts#, Thomas Icard*#
which macro-variable define the macro-states (values of macro-variables)

The high-level model A is a causal abstraction of the low-level implementation £
if the variables in A play the same causal role as their associated low-level variables.

72



Collaborators: Thank you!

Emre Kiciman

Giovanni
Monea

Wei Zhao

h o l !
I ! -

Saibo Geng Kristina Gligoric  Maxime
Debjit Paul Meloux

A

Francois
Portet

Fei liu



Thank you!
Questions?

Contact: maxime.peyrard@univ-grenoble-alpes. fr
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