The changing space of
optimization.

LxMLS
Sara Hooker
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Frontier AI lab, we release state-of-art models and regularly publish.

P 23
- Aya
Open Weight Releases

to Further Multilingual
Progress

= Cohere For AI
Policy Primer

From One to Many:
Expanding the Scope
of Toxicity

Mitigation in

Language Models

The AI
Lanquage

3- Aya Dataset:

An Open-Access
Collection for
Multilingual
Instruction Tuning

The Multilingual
Alignment Prism:

Aligning Global and
Local Preferences to
Reduce Harm

How Does ;
Quantization Affect \
Multilingual LLMs?

3- Aya Model:

An Instruction
Finetuned Open-
Access Multilingual
Language Model

RLHF Can Speak
Many Languages

Unlocking Multilingual
Preference
Optimization for LLMs

Mix Data or
Merge Models?

Optimizing for Diverse
Multi-Task Learning
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Models
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| currently work on designing large scale
language models that are efficient,
multilingual, reliable and trustworthy.

If any of these topics are interesting the talk,
happy to discuss after the talk.



For most of the last two decades, a belief that most
progress is scaling model size has prevailed: “bigger is
better.”

Today, we will ask:
1) Is bigger always better?
2) How are our optimization space and tools are rapidly

changing.

This will change the nature of our field of Al research.



The belief that “bigger has better” has shaped our

ecosystem.

merve &
@mervenoyann

my gpu-poverty appropriate hat is waiting for me in Paris 3
mille mercis @burkaygur @gorkemyurt @julien_c %

Anthropic's Responsible Scaling Policy

Sep 19,2023 + 4 min read

IEEE Spectrum The U.S.-China Chip Ban, Explained Q Typetosearch

The U.S.-China Chip Ban, Explained > The ban
spotlights semiconductors for supercomputers; China
hasn’t yet responded to restrictions

BY SAHUL BAO | 21 KOV 2022 | 4 NIN READ | )

SHARE THIS STORY It has now been over a month since the U.S. Commerce Department issued new

X f in rules that clamped down on the export of certain advanced chips—which have
military or Al applications—to Chinese customers.

e China has yet to respond—but Beijing has multiple options in its arsenal. It’s

unlikely, experts say, that the U.S. actions will be the last fighting word in an
industry that is becoming more geopolitically sensitive by the day.

SENILCONDUCTORS | CHIP.

CHINA | UNITED STATES.




It has resulted in a shift of contributions from academic
to industry research due to gaps in compute.

Number of Parameters (Log Scale)

1.0e+14

1.0e+12

1.0e+10

1.0e+8

1.0e+6

1.0e+4

1.0e+2

Number of Parameters of Significant Machine Learning Systems by Sector, 1950-2022

Source: Epoch, 2022 | Chart: 2023 Al Index Report
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Figure 1.2.9

Al index report



https://aiindex.stanford.edu/report/

Has determined who gets to participate and who
doesn't.

Number of Significant Machine Learning Systems by Country, 2002-22 (Sum)

Source: Al Index, 2022 | Chart: 2023 Al Index Report
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Figure 1.2.5

Al index report, The Low resource double blind, Ahia et al.



https://aiindex.stanford.edu/report/
https://arxiv.org/abs/2110.03036

And has even led to widespread adoption of policy where
larger models are assumed to bring new inflection points

of risk.

Executive Order on the Safe, Secure,
and Trustworthy Development and
Use of Artificial Intelligence

By the authority vested in me as Pre]

Jl

]

of the United States of America, it is he European Parliament

:

2019-2024
:‘C Plenary sitting
pre
i cor01
dis 19.4.2024
po
m CORRIGENDUM
de
aca

to the position of the European Parliament adopted at first reading on 13 March 2024 with a view to
Regul 2024/ Parliar

and of ti

ying do
Regulations (EC) No 300/2008,

2018/1139 and (EU) 2019/2144 anc

ed rul gence and amending
7/2013, (EU) No 168/2013, (EU) 2018/858, (EU)
ves 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828
(Artificial Intelligence Act)
P9_TA(2024)0138
(COM(2021)0206 — C9-0146/2021 — 2021/0106(COD))

In accordance with Rule 241 of the European Parliament's Rules of Procedure, the above position is
corrected as follows:

REGULATION (EU) 2024/...
OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of ...

laying down ised rules on artificial i i and i ions (EC) No

Any model “trained using a
quantity of computing power
greater than 10126 integer or
floating point operations.” will
be subject to more scrutiny.

Implicit is the idea that more
compute results in a new
inflection point of capabilities
and hence risk.

Hooker 2024



https://arxiv.org/abs/2407.05694

So today | will ask a controversial question. Is bigger
always better? \We will cover a few things:

What do we
gain when we
scale?

What comes
next: gradient
free
performance
gains.

Open
challenges
and
opportunities.




The role of model scale and
data in recent
breakthroughs



A “biggeris
better” race in
the amount of
compute,
parameters,
data has
gripped the
field of machine
learning.

Notable AI Models
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https://epochai.org/data/notable-ai-models

This characterizes both vision and NLP tasks.

Bird’s-eye View
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[Sharir et al. 2020]



https://arxiv.org/pdf/2004.08900.pdf

And involves large increases in both model and dataset sizes:
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https://epochai.org/blog/trends-in-training-dataset-sizes

This is captured by Rich Sutton as the “bitter lesson”

The Bitter Lesson .
Rich Sutton ... the only thing that matters

(] ]
March 13, 2019 in the long run is the
The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are Ieve r'a g i n g of c o m p u t e . 2

ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization of
continued exponentially falling cost per unit of computation. Most Al research has been conducted as if the computation
available to the agent were constant (in which case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively more computation inevitably becomes
available. Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage their human

knowledge of the domain, but the only thing that matters in the long run is the leveraging of computation. These two need I n a p u n C h tO t h e eg O Of eVe ry
not run counter to each other, but in practice they tend to. Time spent on one is time not spent on the other. There are . .
psychological commitments to investment in one approach or the other. And the human-knowledge approach tends to m

complicate methods in ways that make them less suited to taking advantage of general methods leveraging computation. CO p u te r SC I e nt I St O u t t h e re ?
There were many examples of Al researchers' belated learning of this bitter lesson, and it is instructive to review some of the

most prominent. what is being implied is that

In computer chess, the methods that defeated the world champion, Kasparov, in 1997, were based on massive, deep search. At

the time, this was looked upon with dismay by the majority of computer-chess researchers who had pursued methods that N Ot h i N g i N CO m p u te r SCie N Ce

leveraged human understanding of the special structure of chess. When a simpler, search-based approach with special
hardware and software proved vastly more effective, these human-knowledge-based chess researchers were not good losers. H

They said that “*brute force" search may have won this time, but it was not a general strategy, and anyway it was not how h IStO ry h a S WO r ke d a S We | I a S
people played chess. These researchers wanted methods based on human input to win and were disappointed when they did

letting a model learn patterns

A similar pattern of research progress was seen in computer Go, only delayed by a further 20 years. Enormous initial efforts . . .
went into avoiding search by taking advantage of human knowledge, or of the special features of the game, but all those

efforts proved irre%evant, or}w,/vorse,gonce sear%h was applied effectigely at scale. Klso important was tl'?e use of learning by self fo r Itse If CO u p | e d WI t h Sca I I n g
play to learn a value function (as it was in many other games and even in chess, although learning did not play a big role in o
the 1997 program that first beat a world champion). Learning by self play, and learning in general, is like search in that it t h ea | g or |t h m.
enables massive computation to be brought to bear. Search and learning are the two most important classes of techniques for

utilizing massive amounts of computation in Al research. In computer Go, as in computer chess, researchers' initial effort was
directed towards utilizing human understanding (so that less search was needed) and only much later was much greater
success had by embracing search and learning.




Is Sutton right?



There is an argument in favor of this approach:

Test / Train Error
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Model Size (ResNet18 Width)
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- Different regimes of
capacity appear to
allow for different
generalization
properties.

- Itis very simple formula
(throw more
parameters at the
model)

[Wei et al. 2022, Nakkiran et al. 2019, Petroni et al., Brown et al.,, Adam et al.]



https://arxiv.org/pdf/2206.07682.pdf
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/2002.08910.pdf
https://arxiv.org/abs/2005.14165
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For example, instruction tuning only improves zero-shot performance on
models above a certain size.
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[Wei et al. 2022]



https://arxiv.org/pdf/2206.07682.pdf

It also requires larger and larger models to take advantage of instruction

fine-tuning.

Average zero-shot accuracy

on held-out tasks (%)

70 : .
Instruction tuning

60

Untuned model
50

40

30

0.4B 2B 8B 688 137B

Model Size (# parameters)

Instruction tuning only improves performance on unseen tasks for models of certain size.

= Cohere For AI



https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html

Certainly if you looked at chatbot arena, it is very clear the largest

models index higher.

‘¥ Chatbot Arena LLM Leaderboard: Community-driven Evaluation for Best LLM and Al chatbots

Chatbot Arena is an open platform for crowdsourced Al benchmarking, developed by researchers at UC Berkeley

and Al chatbots using the Bradley-Terry model to generate live leaderboards. For technical details, check out our

Chatbot Arena thrives on community engagement — cast your vote to help improve Al evaluation!

®Language EBOverview A PriceAnalysis @ WebDevArena  99Vision @
Total #models: 211. Total #votes: 2,736,442. Last updated: 2025-03-02.

Code to recreate leaderboard tables and plots in this . You can contribute your vote at

Category Apply filter

e~ Style Control Show Deprecated

Rank
R: B A M 1
ankx (UB) (Stylectrl) 4 Mode:

= Cohere For AI

o-Image

. With over 1,000,000 user votes, the platform ranks best LLM

= Copilot A

Overall Questions

#models: 211 (100%) #votes: 2,736,442 (100%)

95% CI 4 Votes Organization  License

+8/-10 3364 XAT Proprietary

+11/-11 3242 OpenAL Proprietary

+6/-5 17487 Google Proprietary

+5/-6 15466 Google Proprietary

+5/-4 17221 OpenAL Proprietary
+8/-6 8580 DeepSeek MIT

+6/-5 13257 Google Proprietary

First model on
the leaderboard
with known
parameter count
is Deepseek-R1
685 billion
parameters.

1ink


https://lmarena.ai/?leaderboard=

Scaling model size is still widely favored:

- More de-risked vs more difficult approaches
of crafting new optimization techniques

- Fits into industry quarterly planning cycles -

hard to justify deviating from the
predictable path of gains.

= Cohere For AI



However, a key limitation
of blindly following “the
bitter lesson” is that the
relationship between
model size and
generalization is still not

well understood.



Models at the same capacity have been getting far more

performant over time.

80
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= Cohere For AI

Models under 13B on
the llm open
leaderboard over
time.

Hooker 2024



https://arxiv.org/abs/2407.05694v1

Smaller models frequently outperform far larger models.
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= Cohere For AI

All models over 13B
(grey) that
underperform the
best daily model
under 13B submitted
to the llm open
leaderboard (green).

Hooker 2024



https://arxiv.org/abs/2407.05694v1

We also see this frequently in our own work. Aya Expanse 32B is our state-of-art
multilingual and on Scale’s private leaderboard (third party, no released test set)
outperforms drastically larger models including Claude, Mistral Large 2, & Llama

3.1 405B parameters.
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Scale Private

| eaderboard


https://scale.com/leaderboard/japanese
https://scale.com/leaderboard/japanese

We recently released Aya Vision multilingual multimodal model 8B — which outperforms
llama-3.2- 90B and Molmo 72B across languages spoken by 50% of the worlds

population.

-’
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Multilingual Vision Win Rates

30

5 Molmo-78-D

«” Vision + Text Performance on Multilingual Benchmarks

Aya-Vision-32B @

Qwen-2.5-72B
Molmo 72B 4%

@» Aya-Vision-8B
r
Qwen-2.5-7B {6,

Pixtral-12B Llama-3.2-90B
Gemini-Flash-1.5-8B *
<

0X) Llama-3.2-11B
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Multilingual Text Win Rates

= Cohere For AI

Aya Vision 8B
outperforms models

11x its size - llama
90B.

Aya Vision.



In fact, we observe a highly uncertain relationship between

compute and performance.



In fact, we observe a highly uncertain relationship between

compute and performance.

1)
2)
3)
4)
5)

6)

Data quality compensates for need for compute

Architecture plays a significant role in determining scalability

Post-training optimization reduces need for training time compute.
Diminishing returns to adding more weights.

Many redundancies between weights, most weights can be removed after
training.

Majority of weights used to represent a small slice of overall distribution.



Data quality compensates
for the need for compute.



Recent work finds smaller amounts of higher quality data removes the
need for a larger model.

There is increasing
evidence that efforts to
better curate training
corpus, including
deduping, pruning data
and better quality
synthetic data can
compensate for the need
for larger networks and/or

improve training dynamics.

= Cohere For AI

% train examples with % valid with
dupintrain dupinvalid dupin train

C4 3.04% 1.59% 4.60%
RealNews 13.63% 1.25% 14.35%
LMIB 4.86% 0.07% 4.92%
Wiki40B 0.39% 0.26% 0.72%

Table 2: The fraction of examples identified by
NEARDUP as near-duplicates.

Lee et al. 2022

d Scaling Laws

Allocating compute when repeating

Final test loss

Figure 1: Return and cation when repeating data. (Left): Loss of LLMs (4.2B parameters)
scaled on repeated data decays predictably (§6). (Right): To maximize performance when repeating,
our data-constrained scaling laws and empirical data suggest training smaller models for more epochs
in contrast to what assuming Chinchilla scaling laws [42] hold for repeated data would predict (§5).

...are this percent correct or less.
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"~ == ParaCraw|
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Figure 1: Fraction of languages in each dataset below
a given quality threshold (percent correct).

Muennighoff et al.
2023

Kreutzer at al. 2022



https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00447/109285
https://arxiv.org/pdf/2107.06499.pdf
https://arxiv.org/pdf/2305.16264.pdf
https://arxiv.org/pdf/2305.16264.pdf

Our recent work focuses on effective data pruning for pretraining
internet scale.

When Less is More:
Investigating Data Pruning for Pretraining
LLMs at Scale

Initial Data Apply Pruning Algorithm Pruned Data
Max Marion Ahmet Ustiin Luiza Pozzobon
. Cohere for AI Cohere for AI Cohere for AI
/D N\ é- 3 Keep/Bg\ttom maxwell@cohere.com ahmet@cohere.com luiza@cohere.com
7 2 " ‘ Alex Wang Marzieh Fadaee Sara Hooker
—— 1 L= B Cohere Cohere for AI Cohere for AT
—— 29 F=——= 82 Pretrain on Dg alexwang@cohere.com marzieh@cohere.com sarahooker@cohere.com
— or
— 23 =—— 383
Keep Middle
Abstract
strac
/ Large volumes of text data have contributed significantly to the development of large language
- . . models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
r_‘ . . or to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
—— Keep Top to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
— D this work, we take a wider view and explore scalable estimates of data quality that can be used to
— Zp b—x 8, —/ systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
i i of the simple data quality estimator of perplexity, as well as more sophisticated and computationally
R Pruning metrics intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and

prune pretraining corpora, and we subsequently compare LLMs trained on these pruned datasets.
Surprisingly, we find that the simple technique of perplexity outperforms our more computationally
expensive scoring methods. We improve over our no-pruning baseline while training on as little
as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in
automatically curating high quality corpora and suggests the majority of pretraining data can be
removed while retaining performance.

[[Marion et al. 2023]]



https://arxiv.org/abs/2309.04564

We can improve over our
no-pruning baseline while
training on as little as 30% of
the original training dataset.

= Cohere For AI

When Less is More:
Investigating Data Pruning for Pretraining
LLMs at Scale

Luiza Pozzobon
Cohere for AI

luiza@cohere.com

Ahmet Ustiin
Cohere for AI
ahmet@cohere.com

Max Marion
Cohere for AI
maxwell@cohere.com

Sara Hooker
Cohere for AI

sarahooker@cohere.com

Alex Wang Marzieh Fadaee
Cohere Cohere for AI

alexwang@cohere. com marzieh@cohere.com

Abstract

Large volumes of text data have contributed significantly to the development of large language
models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
this work, we take a wider view and explore scalable estimates of data quality that can be used to
systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
of the simple data quality estimator of perplexity, as well as more sophisticated and computationally

intoncive actimatac nf tha Brrar T.9 Narm ond momarizatinn Thaca matrice avre nicad +n vanls and

[[Marion et al. 2023]]
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Data pruning is a valuable optimization at multiple stages of training
pipeline — here we also show promising results in preference training.

We reduce instances of indecisive
(or “tie”) outcomes by up to 54%
compared to a random sample
when focusing on the top-20
percentile of prioritized instances.

This helps save valuable human

feedback for the most important
instances.

= Cohere For AI

Which Prompts Make The Difference?
Data Prioritization For Efficient Human
LLM Evaluation

Meriem Boubdir Edward Kim Beyza Ermis
Cohere for AI Cohere Cohere for AI
meri.boubdir@gmail.com edward@cohere.com beyza@cohere.com
Marzieh Fadaee Sara Hooker
Cohere for AI Cohere for Al
marzieh@cohere.com sarahooker@cohere.com
Abstract

Human evaluation is increasingly critical for assessing large language models, capturing linguis-
tic nuances, and reflecting user preferences more accurately than traditional automated metrics.
However, the resource-intensive nature of this type of annotation process poses significant chal-
lenges. The key question driving our work: is it feasible to minimize human-in-the-loop feedback
by prioritizing data instances which most effectively distinguish between models? We evaluate sev-
eral metric-based methods and find that these metrics enhance the efficiency of human evaluations
by minimizing the number of required annotations, thus saving time and cost, while ensuring a
robust performance evaluation. We show that our method is effective across widely used model
families, reducing instances of indecisive (or “tie”) outcomes by up to 54% compared to a random
sample when focusing on the top-20 percentile of prioritized instances. This potential reduction in
required human effort positions our approach as a valuable strategy in future large language model
evaluations.

[[Boubdir et al. 2023]]
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Relationship between
welghts and performance is
not well understood.



1. Diminishing returns to adding parameters. Millions of parameters
are needed to eek out additional gains.

ImageNet Top-1 Accurac
Model | Parameters” | Features | Image Size | Paper | Public Checkpoint” I 1
Inception v1° [69] 5.6M 1024 224 132 69.8
BN-Inception? [34] 10.2M 1024 224 74.8 74.0
Inception v3 [70] 21.8M 2048 299 78.8 78.0
Inception v4 [68] 41.1M 1536 299 80.0 80.2
Inception-ResNet v2 [68] 54.3M 1536 299 80.1 80.4
ResNet-50 v1¢ [29, 26, 25] 23.5M 2048 224 76.4 732
ResNet-101 v1 [29, 26, 25] 42.5M 2048 224 719 76.4
ResNet-152 v1 [29, 26, 25] 58.1M 2048 224 N/A 76.8 !
DenseNet-121 [31] 7.0M 1024 224 75.0 74.8
DenseNet-169 [31] 12.5M 1024 224 | 762 76.2 Almost
DenseNet-201 [31] 18.1M 1024 224 | 714 773 double the
MobileNet v1 [30] 3.2M 1024 224 70.6 70.7
MobileNet v2 [61] 2.2M 1280 224 | 720 71.8 amount of
MobileNet v2 (1.4) [61] 4.3M 1792 224 | 74.7 75.0 weights for a
NASNet-A Mobile [84] 4.2M 1056 224 74.0 74.0 . 0
NASNet-A Large [84] 84.7M 4032 331 | 827 82.7 gainin 2%
points.

Table: Kornblith et al., 2018 [Kaplan + 2020]
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The looming question of diminishing returns has also impacted recent
model launches.

Interconmests | Nathan Lambert . The End of Scaling: GPT-4.5 and the

https://www.interconnects.ai . Looming Al Winter | by Gabrlel
GPT-4.5: "Not a frontier model"? - by

The transformer architecture that powers models like
Nathan Lambert

GPT-4.5 has been pushed to its limits, and the returns on

Feb 28, 2025 — GPT-4.5 is a point on the graph that further scaling have diminished to the point where they...
scaling is still coming, but trying to make sense of it in a
day-by-day transition is hard.

Analysis and Technology

Is OpenAl hitting a wall with huge and

expensive GPT-4.5 model?

Some researchers think OpenAl's giant and expensive latest model is a sign that tech
companies cannot keep making progress by continually scaling up

By Matthew Sparkes

EJ 28 February 2025
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2. Redundancies Between Weights

Predicting Parameters in Deep Learning

Denil et al. find that a small
o el Ranent - Nondo de o set of weights can be used to
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Abstract

We demonstrate that there is significant redundancy in the parameterization of
several deep learning models. Given only a few weight values for each feature it
is possible to accurately predict the remaining values. Moreover, we show that not
only can the parameter values be predicted, but many of them need not be learned
at all. We train several different architectures by learning only a small number of
weights and predicting the rest. In the best case we are able to predict more than
95% of the weights of a network without any drop in accuracy.

[[Denil et al., 2014]]



https://arxiv.org/abs/1306.0543

3. Most weights can be removed after training is finished (while only
losing a few % in test-set accuracy!)

Bl baseline Bl variational dropout
B magnitude pruning random pruning
0.80 .
With 90% of
0.75
. 0'70 the weights
B o o5 removed, a
o 0'60 ResNet-50 only
- 0'55 loses ~3% of
2 050 performance
- oas (for certain
0'40 pruning
0.5 0.6 0.7 0.8 0.9 1.0 methods).
Sparsity

[[The State of Sparsity in Deep Neural Networks, 2019, Gale, Elsen, Hooker]]



Empirical risk minimization means we optimize to
reduce average error:

This means it takes
more capacity or
longer training to
learn rare features.

Majority of features are
learnt early in training.
Despite this most of
training focuses on
long-tail.

Majority of features
can be learnt using
small models. Scaling
of size primarily
benefits small tiny
part of distribution.



Work with colleagues over last 5 years has focused on

understanding what is lost and gained as we vary model size.

CHARACTERISING BIAS IN COMPRESSED MODELS
What Do Compressed Deep Neural Networks Forget?
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Deep neural network pruning and quantization techniques have demonstrated it is
possible to achieve high levels ression with s
icant ABSTRACT
differences in how different classes and images are impacted by e compression
techniques. We find that models with radically different numbers of weighis have
comparable top-line performance metrics but diverge considerably in behavior
on a narrow subset of the dataset. This small subset of data points, which we
rm Pruning Identified Exemplars (PIES) are systematically more impacted by the
inioduction of sparsity. Compression disproportionately impacts model perfor-
ance on the unden'epr:xm:d long-tail of the data distribution. PIEs over-index
on atypical or noisy images that are far more challenging for both humans and
P dur work provides intuition into the role of capacil
and the trade-offs incurred by compression. An understanding of
this disparate impact s critical given the widespread deployment of compressed
‘models in the wild.

y and widespread use of pruning and quantization is driven by the severe resource
constraints of deploying deep neural networks to environments with strict mmv ‘memory and energy
requirements, These techniques achieve high levels of compression with negligible impact on top-line
‘metrics (top-1 and top-S accuracy). However, overall accuracy hides disproportionately high errors
on a small subset of examples; we call this subset Compression Identified Exemplars (CIE). We
further establish that for CIE examples, compression amplifies g algorithmic bias. Pruning
disproportionately impacts performance on underrepresented features, which often coincides with
considerations of fairess. Given that CIE is a relatively small subset but a great contributor of error
in the model, we propose its use as a human-in-the-loop auditing tool to surface a tractable subset
of the datast forfuter inspecion orannotation by a domin exper. We provide ualtive and
quantitative support that C/E surfaces the most challenging examples in the data distribution for
human-in-the-loop ’mdmng

The Low-Resource Double Bind: An Empirical Study of Pruning for
Low-Resource Machine Translation
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Abstract

A “bigger is better” explosion in the num-
ber of parameters in deep neural networks has
made tncresinlychallnging to make -
networks accessible in compute-

esrred emironment Compression tech-
niques have taken on renewed importan

way to bridge the gap. However, evaluation of
the trade-offs incurred by popular compression
techniques has been centered on high-resource.
datasets. In this work, we instead consider
the impact of compression in a data-limited
regime. We introduce the term low-resource
double bind to refer to the co-occurrence of
data limitations and compute resource con-
straints. This is 2 common setting for NLP for
low-resource languages, yet the trade-offs in
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Intriguing Properties of Compression on Multilingual Models
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Abstract

Malilingual models ae oficn paricularly de-

scalng to generslize t0 3 grow-

ing number of langusges. Compression tech-
are widely reled upon to reconcile the

Figure 1: Cost of mobile data by country per language
rank according to the taxonomy by Joshi et al. (2020).

disproportionately impact the performance of
lowresource languages.
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‘while maintaining comparable aggregate perfor-
mance are widely used, such as quantzation (Shen

al., 2020), compression (Michel ctal, 2019; La-
gunas etal,, 2021) and distillation (Tsai etal., 2019;
Sanh etal., 2019; Pu etal., 2021).

e keroiics languages, can
be fr more scvere (Hooker ot 1, 201; loker
etal, 2020; Ahia et al, 2021). Dispariies in re-

source availabiliy. This makes compression al the
sary, but also motivates a thorough con-

sideration of the subsequent impact of compression
ization.

In this work, we develop an experimental frame-
‘work o investigatethe impactof compression dur.

tuning of pre-trained multilingual mod-
el which we apply to Named Entity Recognition

[Hooker et al. 2019, Hooker, Moorosi et al, 2020,

Ahia et al. 2021,
2024]]
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Across a variety of settings and modalities, we find that removing weights
causes models to loss performance on the long-tail. The majority of weights
(90% of all weights) are used to memorize very rare examples in the dataset.

CelebA Attribute % of Training Set

100

% of Training Set

When we
remove weights
models lose
performance on
rare examples.

~< Cohere For AI [[Hooker et al. 2019, Hooker, Moorosi et al, 2020]]
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It is worth emphasizing this finding: We lose the long-tail when we
remove the majority of all training weights.

Put differently, we are using the majority of our weights to encode a useful
representation for a small fraction of our training distribution.

_
| | | | |
0% 90 %
Overparameterized Model with 20%
Dense Model weights removed

Google



When we scale models, we are paying an enormous cost to learn a small
slice of the distribution (noisy and atypical examples).

CelebA Attribute % of Training Set
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Y ={Blond,
Non-Blond} 1
Training set:
162,770
Non-Blond Male Non-Blond Female Blond Female Blond Male Blond Old
66,874 71,628 22,880 1,387 4,037
44% 41% 14% 0.85% 2.48%

Figure 1: Most natural image datasets exhibit a long-tail distribution with an unequal frequency of attributes in the

training data. Below each attribute sub-group in CelebA, we report the share of training set and total frequency count.

WHAT DO COMPRESSED DEEP NEURAL NETWORKS FORGET?
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ABSTRACT

Deep neural network pruning and quantization techniques have demonstrated it is possible
to achieve high levels of with isil little ion to test set accuracy.
However, this measure of performance conceals significant differences in how different
classes and images are impacted by model compression techniques. We find that models
with radically different numbers of weights have comparable top-line performance metrics
but diverge considerably in behavior on a narrow subset of the dataset. This small subset of
data points, which we term Pruning Identified Exemplars (PIEs), are systematically more
impacted by the introduction of sparsity. Our work is the first to provide a formal framework
for auditing the disparate harm incurred by compression and a way to quantify the trade-
offs involved. An understanding of this disparate impact is critical given the widespread
deployment of compressed models in the wild.

1 Introduction

Between infancy and adull.hood the number of synapses in our brain first muluply and then fa].l Synaptic
pruning improves by removing neurons and synaptic that are
most useful for the environment (Rakic et al., 1994). Despite losing 50% of all synapses between age two
and ten, the brain continues to function (Kolb & Whishaw, 2009; Sowell et al., 2004). The phrase "Use it or
lose it" is frequently used to describe the environmental influence of the learning process on synaptic pruning,
however there is little scientific consensus on what exactly is lost (Casey et al., 2000).

Google I 1 1]
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5. Most of training time is spent learning rare examples. High frequency
examples are learnt early on and don’t require much training time.

Noisy and atypical examples are learnt last

I Atypical

I Corrupted

B Random Outputs
W Typical

Loss values

Epochs

Typical examples
< Cohere For AI learnt first [[Siddiqui et al. 2023]]
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So where do we end up?

| may have
convinced you
that we are now in
a period of
decreasing returns
to compute.



So where do we end up?

| may have
convinced you
that we are now in
a period of
decreasing returns
to compute.

Regardless of whether
you are convinced that
transformers are
saturated, | hope | have
convinced you that our
current trajectory is
extremely expensive.
We pay a lot to learn
infrequent and rare
features.



Point of comparison: our Brain is incredibly energy efficient.

Has over 85 billion neurons but runs
on the energy equivalent of an
electric shaver

Key design choices to embed
efficiency:

Specialized pathways

Simulate much of what we “see”
Log scale vision




Some aspects of what we do with deep neural networks is

painfully inefficient.

- We do not have adaptive compute.
Typically we see all examples same
amount of time during training.

- Global updates mean all prior
information is erased.

- Empirical risk minimization means
while we optimize for average
performance, it takes considerable
more compute to model rare or
infrequent artefacts.




So where do we end up?

| may have
convinced you
that we are now in
a period of
decreasing returns
to compute.

Regardless of whether
you are convinced that
transformers are
saturated, | hope | have
convinced you that our
current trajectory is
extremely expensive.
We pay a lot to learn
infrequent and rare
features.

So - that prompts
the question of what
comes next.

If scaling model
size is slowly dying
— what is our
biggest lever of
progress?



“What we have before us are
some breathtaking opportunities
disguised as insoluble problems”

John Gardner, 1965.



Modern computer science as
a field has only existed
for the last 75 years.

2025

1956

= Cohere For AI



Our pursuit as a field has been centered around optimizing
the algorithm.

Algorithm




Now, we are an interesting time where our tools for
optimization are finding new spaces.

Optimization in the

data space. Algorithm




Now, we are an interesting time where our tools for
optimization are finding new spaces.

Optimization in the

data space.

Algorithm

Inference time
scaling.

Gradient free
performance
boosts.




' Optimization in the data space
— for the first time it is scalable
to steer the data space towards

properties we care about.




Promising directions for optimizing in the data
space to make better use of capacity:

1 Data pruning, Synthetic data
Weighting

Data Arbitrage

“Steering dataset
generation using

“Spending more
capacity on the data

‘on-the-fly’
objectives”

points we care
about”




Does your data spark joy? Performance gains from domain
upsampling at the end of training

Which Prompts Make The Difference?
Data Prioritization For Efficient Human
LLM Evaluation

Cody Blakeney", Mansheej Paul’, Brett W. Larsen®, Sean Owen, and Jonathan Frankle
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Cohere for AT datasets for large la dls (LLMs) b lions of tok
Pretraining datascts for large langnage models (LLMs) have grown to trillions of tokens
beyzaCcohere . com composed of large amounts of CommonCraw] (CC) web)suxpe along with smaller, domsain-
spesifc. datses. I s expeniv o wndrstand th impact of thosedomin-pecic diasets
at large FLOP scales is required to reveal s
o difficlt au exnerget benchanarke.  Given. the ncreasig <o of expecimenting with
pretraining data, how does one determine the optimal balance between the diversity in
goncral web serapes and the information density of domain spocific data? In this work, we
t0 leverage the smller domain specific datasets by upsampling them relutive to
CC at the end of training to drive performance improvements on diffcult benchmarks. This
simple technique allows us o improve up to 6.90 pp on MMLU, 826 pp on GSMSK, and
617 pp on HumanEal relative to the base data mix for a 7B model trained for 1 trillion (T)
tokens, thus rivaling Llama-2 (7B)—a model trained for twice as long. We experiment with
ablating the duration of domain upsampling from 5% to 30% of training and find that 10%
t0 20% percent is optimal for navigating the tradooff between goneral language modeling
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Abstract

Human evaluation is increasingly critical for assessing large language models, capturing linguis-

tic nuances, and reflecting user ‘more than metrics. capabilities and targeted benchmarks. We also use domain upsampling to characterize at
H the % & £ this & £ L hal idual datasets for improving various benchmarks by removing them
lowever, ithe resource-intensive matura of: this type, of Drocess poses I inving s final phase o srainins. This toet opane up the abiey o experiment wh fho

impact of different pretraining datasets at scale, but at an order of magnitude lower cost

lenges. The key question driving our work: s it feasible to minimize human-in-the-loop feedback
compared to full pretraining runs.

by prioritizing data instances which most effectively distinguish between models? We evaluate sev-
eral metric-based methods and find that these metrics enhance the efficiency of human i T
by mini |

Data pruning or

robust p
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Abstract
Abstract Neural Machine Translation models are extremely data and compute-hungry. However, not all data
points contribute equally to model training and gencralization. Data pruning to remove the low-

Large volumes of text data have to the of large language value data points has the benefit of drastically reducing the compute budget without a significant

models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
this work, we take a wider view and explore scalable estimates of data quality that can be used to
systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
of the simple data quality estimator of perplexity, as well as more sophisticated and computationally
intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and
prune pretraining corpora, and we subsequently compare LLMs trained on these pruned datasets.

drop in model performance. In this paper, we propose a new data. pruning technique: Checkpoints
Across Time (CAT), that leverages early model training dynamics to identify the most relevant
data points for model performance. We benchmark CAT against several data pruning techniques
including COMET-QE, LASER and LaBSE. We find that CAT outperforms the benchmarks on
Indo-European languages on multiple test scts. When applied to English-German, English-French
and English-Swahili translation tasks, CAT achieves comparable performance to using the full
dataset, while pruning up to 50% of training data. We inspect the data points that CAT seleets
and find that it tends to favor longer sentences and sentences with unique or rare words.

Surprisingly, we find that the simple technique of perplexity o s our more
expensive scoring methods. We improve over our no-pruning baseline while training on as little
as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in
automatically curating high quality corpora and suggests the majority of pretraining data can be
removed while retaining performance.

[[Boubdir et al. 2023, Marion et al. 2023, Blakeney et al. 2024, Chimoto et al. 2024]]
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Much of our recent work over the last two years has focused
on data pruning, prioritization of examples.

When Less is More:
Investigating Data Pruning for Pretraining
LLMs at Scale
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Abstract
Large volumes of text data have contributed signi to the of large language

models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
this work, we take a wider view and explore scalable estimates of data quality that can be used to
systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
of the simple data quality estimator of perplexity, as well as more sophisticated and computationally
intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and
prune ining corpora, and we compare LLMs trained on these pruned datasets.
Surprisingly, we find that the simple technique of perplexity outperforms our more computationally
expensive scoring methods. We improve over our no-pruning baseline while training on as little
as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in
automatically curating high quality corpora and suggests the majority of pretraining data can be
removed while retaining performance.
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Abstract

Human evaluation is increasingly critical for assessing large language models, capturing linguis-
tic nuances, and reflecting user preferences more accurately than traditional automated metrics.
However, the resource-intensive nature of this type of annotation process poses significant chal-
lenges. The key question driving our work: is it feasible to minimize human-in-the-loop feedback
by prioritizing data instances which most effectively distinguish between models? We evaluate sev-
eral metric-based methods and find that these metrics enhance the efficiency of human evaluations
by minimizing the number of required annotations, thus saving time and cost, while ensuring a
robust performance evaluation. We show that our method is effective across widely used model
families, reducing instances of indecisive (or “tic”) outcomes by up to 54% compared to a random
sample when focusing on the top-20 percentile of prioritized instances. This potential reduction in
required human effort positions our approach as a valuable strategy in future large language model

Pretraining Scale

[[Marion et al. 2023]]

Instruction Finetuning Pruning
and Dataset Weighting

[[Singh et al. 2023]]

Prioritizing human
annotation

[[Boubdir et al. 2023]]
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Multilingual Arbitrage: Optimizing Data
Pools to Accelerate Multilingual Progress
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Abstract

The use of synthetic data has played a critical role in recent state-of-art breal
overly relying on a single oracle teacher model to generate data has been sh
collapse and invite propagation of biases. These limitations are particularly e
settings, where the absence of a universally effective teacher model that excel
presents significant challenges. In this work, we address these extreme diffe
“multilingual arbitrage”, which capitalizes on performance variations betwee
a given language. To do so, we strategically route samples through a div
cach with unique strengths in different languages. Across exhaustive experi
models, our work suggests that arbitrage techniques allow for spectacular gain
far outperform relying on a single teacher. In particular, compared to the b
observe gains of up to 56.5% improvement in win rates averaged across all lang
to multilingual arbitrage. We observe the most significant gains for the leasty
in our pool.

Two heads are better than one, not because eif
because they are unlikely to go wrong in the s

LLM See, LLM Do: Guiding Data Generation
to Target Non-Differentiable Objectives

Luisa Shimat of Sebastian Ruder Julia Kreutzer
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Abstract

The widespread adoption of synthetic data raises new questions about how models generating
the data can influence other large language models (LLMs) via distilled data. To start, our work
exhaustively characterizes the impact of passive inheritance of model properties by systematically
studying the consequences of synthetic data integration. We provide one of the most comprehensive
studies to-date of how the source of synthetic data shapes models’ internal biases, calibration and
generations’ textual attributes and preferences. We find that models are surprisingly sensitive
towards certain attributes even when the synthetic data prompts appear “neutral.” which invites the
question whether this sensitivity can be exploited for good.

Our findings invite the question can we explicitly steer the models towards the properties we want at
test time by exploiting the data generation process? This would have historically been considered
infeasible due to the cost of collecting data with a specific characteristic or objective in mind.
However, improvement in the quality of synthetic data, as well as a shift towards general-purpose
models designed to follow a diverse way of instructions, means this question is timely. We propose
active inheritance as a term to describe i 11 ini hetic data ding to a
non-differentiable objective. We demonstrate how active inheritance can steer the generation profiles
of models towards desirable non-differentiable attributes, e.g. high lexical diversity or low toxicity.

[[Odumakinde et al 2024, Shimabucoro et al 2024.]]
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ML researchers have historically treated as data to be fixed,
something to be worked around rather than something they can

control.

DataSet

Fixed
(dataset creators are
usually distinct from
dataset consumers)

-

Extract patterns from data
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This also meant we were stuck with the quality of datasets collected.

MS CELEB dataset
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Most of machine learning has been built around the
assumption that we sample IID from the underlying
distribution we want to model.

Long-Tailed Distribution

However, this is highly
inefficient — because it
means we have to wade
through a lot of frequent
examples before we start to

learn the rare examples. Long Tail

Frequency

( L

Items




However, we are in the midst of one of the most profound
paradigm shifts. Advances in synthetic data make it much
more interesting to imagine the data space as malleable.

1. Large scale
annotation fromlims E»EIE]
allow for more Provenance
malleable annotation
categories.

Initiative

Uncover the datasets used to train
large language models




Targeted synthetic data creation allows us to oversample from
parts of the distribution we deem important but isn’t well
represented in a random collected sample.

Long-Tailed Distribution

Long Tail




Now we can start to optimize and steer in the data space. We
have done significant work on this over the last year — we call
this “active inheritance.”

LLM See, LLM Do: Guiding Data Generation
to Target Non-Differentiable Objectives

Can we explicitly steer the B i il AT
models towards the

. Marzieh Fadaee' Sara Hooker!
proper‘“es we Want at test Cohere For Al Cohere For Al
time by exploiting the data
generation process?

Abstract

The widespread adoption of synthetic data raises new questions about how models generating
the data can influence other large language models (LLMs) via distilled data. To start, our work
exhaustively characterizes the impact of passive inheritance of model properties by systematically
studying the consequences of synthetic data integration. We provide one of the most comprehensive
studies to-date of how the source of synthetic data shapes models’ internal biases, calibration and
generations’ textual attributes and preferences. We find that models are surprisingly sensitive
towards certain attributes even when the synthetic data prompts appear “neutral.” which invites the
question whether this sensitivity can be exploited for good.

Our findings invite the question can we explicitly steer the models towards the properties we want at
test time by exploiting the data generation process? This would have historically been considered
infeasible due to the cost of collecting data with a specific characteristic or objective in mind.
S h im a b ucoro et However, ir'nprovement in the. quality of syl'ithetic c'iata, as well as a shiftb tona.n':ls general-purpose
models designed to follow a diverse way of instructions, means this question is timely. We propose
a 1 . 2 @24 active inheritance as a term to describe intentionally constraining synthetic data according to a
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Our recent work show significant gains when we explicitly steer data
generations toward non-differentiable properties (toxicity, length).

Single-source Sampling Multi-source Sampling
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We also show that we can dramatically improve performance by
targeting to pick the best teacher model for parts of the distribution

we care about.

Multilingual Arbitrage: Optimizing Data
Pools to Accelerate Multilingual Progress

Ayomide Odumakinde !, Daniel D’souza *1, Pat Verga?,
Beyza Ermis *!, and Sara Hooker!

!Cohere For Al, 2Cohere

Corresponding authors: Beyza Ermis, Sara Hooker, Ayomide Odumakinde {beyza, sarahooker,
ayomideodumakinde }@cohere. com

Abstract

The use of synthetic data has played a critical role in recent state-of-art breakthroughs. However,
overly relying on a single oracle teacher model to generate data has been shown to lead to model
collapse and invite propagation of biases. These limitations are particularly evident in multilingual
settings, where the absence of a universally effective teacher model that excels across all languages
presents significant challenges. In this work, we address these extreme difference by introducing
“multilingual arbitrage”, which capitalizes on performance variations between multiple models for
a given language. To do so, we strategically route samples through a diverse pool of models,
each with unique strengths in different languages. Across exhaustive experiments on state-of-art
models, our work suggests that arbitrage techniques allow for spectacular gains in performance that
far outperform relying on a single teacher. In particular, compared to the best single teacher, we
observe gains of up to 56.5% improvement in win rates averaged across all languages when switching
to multilingual arbitrage. We observe the most significant gains for the least resourced languages
in our pool.

Two heads are better than one, not because either is infallible, but
because they are unlikely to go wrong in the same direction.

C.S. Lewis

Prompts Completions
Py "BATBIRRH ARHREIER" Arbitrage Pool % "ehE BRI RRART .. &
P2 | "Quand ouvre le musée du Louvre?" ol Aya—ﬁ.‘_yl “"Le musée du Louvre ouvre a 9h ..." ¢,
P3| "Konu cBATKYIOTb iBaHa Kynana?" ) l . . "IsaHa Kynana npunapae ..." Cs
P " 0ae ) ey JuiaY) A " 3 3 1 Mo el el Gl s 1 Training (
— r {';_ : l:> Student
" o ] > ' )
P![ Kapadokya Nedir?' > |"Kapadokya, Anadolu'da tarihi ..." |¢s 8 Model )
p,,,,[ "¢Cuédndo es La Tomatina?" —I_> ) ‘/"A finales de agosto suele ser ..." ]o,H
00 | |
| RETEBK? " [ mEEEEX . e

Arbitrage Training Set

Figure 1: Overview of Multilingual Arbitrage. Instead of relying on a single “oracle” teacher,
multilingual arbitrage re-frames the distillation problem as learning how to optimize sampling for
a desired part of the data distribution from an ensemble of teachers.

avoids mode collapse - leveraging pools of models with
different strengths to compose data distribution.

Avomide Odumakinde et al. 2025
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What can we do when we
- don't allow for any gradient

updates?

Increasingly, optimization

has moved post training.




What are some optimization approaches that don't require gradient updates
but greatly improve model performance?



A profound shift in how we optimize is underway. We are in an era where
we can learn “on-the-fly” — and adapt models based upon immediate
context.

Gradient free performance

boosts.
Chan_ggeslfr_nodel Navigates search Conditions
ISetr: space of solution: response in-place
Verain to immediate
el Inference scaling feedback




Many techniques which add large boosts to performance do not require any
additional gradient updates.

Compute Heavy ( Compute Light [ Gradient Free
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You can think of merging as bonsai grafting — you can target
inheriting certain capabilities from a pool of models.

post-training

Pre-Training Post-Training Pre-Training Post-Training

| | |




Model merging combines two or more neural networks into a single model
by combining the weights. No gradient updates are needed.
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Merging requires no additional training, and often preserves performance
while introducing new capabilities.

Mix Data or Merge Models?

Optimizing for Diverse Multi-Task Learning . | = is%paamix  mE gestMerge = 15% Data Mix  EEE Best Merge
5 9 £ 80 78.0
Aakankshal, Arash Ahmadian!2, Seraphina Goldfarb-Tarrant?, Beyza Ermis!, - ©
Marzieh Fadaee', and Sara Hooker! o T
o £ 67.4
520 z :
!Cohere For Al, *Cohere .S v
R 560
Corresponding authors: Aakanksha, Marzieh Fadaee, Sara Hooker {aakanksha, marzieh, sarahooker}@cohere.com o -40 o)
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Abstract = : -58.2 -57.8
Large Language Models (LLMs) have been adopted and deployed worldwide for a broad variety of SET DPO 40 SFT DPO

applications. However, ensuring their safe use remains a significant challenge. Preference training
and safety measures often overfit to harms prevalent in Western-centric datasets, and safety protocols
frequently fail to extend to multilingual settings. In this work, we explore model merging in a diverse

Figure 2: Mizing versus merging: Safety and general performance of a 15% Safety Miz model (§2.2)

multi-task setting, combining safety and general-purpose tasks within a multilingual context. Each against SLERP merging, which emerges as the best method for balancing trade-offs, for both SFT
language introduces unique and varied learning challenges across tasks. We find that objective-based and DPO based checkpoints. Lower is better for (a) and higher is better for (b). Both metrics are
merging is more effective than mixing data, with improvements of up to 8% and 10% in general .

performance and safety respectively. We also find that language-based merging is highly effective measured with respect to the Aya 23 base model.

— by merging monolingually fine-tuned models, we achieve a 4% increase in general performance

and 7% reduction in harm across all languages on top of the data mixtures method using the same
available data. Overall, our comprehensive study of merging approaches provides a useful framework
for building strong and safe multilingual models.

Aakanksha et al. 202
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Aya Vision extends multimodal performance to multilingual.

Text Win Rates against Initial LLM

-’
=“Aya Vision: Advancing the Frontier of
Multilingual Multimodality

Saurabh Dash™!, Yiyang Nan*!, John Dang!, Arash Ahmadian??,
Shivalika Singh!, Madeline Smith', Bharat Venkitesh?,
Vlad Shmyhlo?, Viraat Aryabumi?, Walter Beller-Morales?,
Jeremy Pekmez?, Jason Ozuzu?, Pierre Richemond?,

Acyr Locatelli?, Nick Frosst2, Phil Blunsom?, Aidan Gomez?2,
Ivan Zhang?, Marzieh Fadaee!, Manoj Govindassamy?, Sudip Roy?,
Matthias Gallé*!, Beyza Ermis®!, Ahmet Ustiin®?,
and Sara Hooker*!
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Corresponding authors: {saurabh, olivernan, matthias, beyza, ahmet, sarahooker }@cohere.com =50

Abstract

Building multimodal language models is fundamentally challenging: it requires aligning vision and
language modalities, curating high-quality instruction data, and avoiding the degradation of exist-
ing text-only capabilities once vision is introduced. These difficulties are further magnified in the

Just finetuning
multilingual setting, where the need for multimodal data in different languages exacerbates exist- a
ing data scarcity, machine translation often distorts meaning, and catastrophic forgetting is more r e S u 1 t S 1 n 1 a r g e

pronounced. To address the aforementioned challenges, we introduce novel techniques spanning .
both data and modeling. First, we develop a synthetic annotation framework that curates high- d g d

quality, diverse multilingual multimodal instruction data, enabling Aya Vision models to produce t e X t e r a a t 1 O n Y
natural, human-preferred responses to multimodal inputs across many languages. Complementing
this, we propose a cross-modal model merging technique that mitigates catastrophic forgetting,
effectively preserving text-only capabilities while simultaneously enhancing multimodal generative
performance. Aya-Vision-8B achieves best-in-class performance compared to strong multimodal
models such as Qwen-2.5-VL-7B, Pixtral-12B, and even much larger Llama-3.2-90B-Vision. We




We can avoid degradation by merging — add in new capabilities without
compromising existing performance.

100~ Win Rates Comparison: Pre-Merge vs Post-Merge
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There are considerable benefits and simplicity to merging — for inheriting
desirable capabilities while preserving existing behavior.

Command A:
An Enterprise-Ready Large Language Model
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Inference time techniques spend more time on selecting which
fruit to pick, and how to squeeze (combine) the best fruit.

OR

Inference
Pre-Training Post-Training

| |

~<
Sample Squeeze
I — > > T
— ¥y o o 0o _
Pre-Training Post-Training Inference

[

|

]




With inference compute, you spend a fraction of the compute
during pre-training but see large gains.

=« Cohere Labs

When Life Gives You Samples
The Benefits of Scaling up Inference Compute for
Multilingual LLMs

Langs
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Ammar Khairi*!, Daniel D’souza!, Ye Shen?, Julia Kreutzer®!,
and Sara Hooker*!
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Abstract

Recent advancements in large language models (LLMs) have shifted focus toward scaling inference-
time compute—improving performance without retraining the model. A common approach is to
sample multiple outputs in parallel, and select one of these as the final output. However, work to
date has focused on English and a handful of domains such as math and code. In contrast, we are
most interested in techniques that generalize across open-ended tasks, formally verifiable tasks,
and across languages. In this work, we study how to robustly scale inference-time compute for
open-ended generative tasks in a multilingual, multi-task setting.

Our findings show that both sampling strategy—based on temperature variation—and selection
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By strategically sampling up to 5 samples, 10%+ winrates
on state-of-art Command-A 100 billion parameter model.
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Controllability and continuous learning techniques aim to remove
the burden from the user, by inferring from the context and
automatically adapting the model.

Avoid everyone have
to be an expert
prompt engineer.

Respond to user
feedback real-time.

Continuously adapt to
new inputs.

Post-Training



One of our goals: make expert prompting a hack of

the past.
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Treasure Hunt: Real-time Targeting of the
Long Tail using Training-Time Markers

Daniel D’souza*!, Julia Kreutzer!, Adrien Morisot?,
Ahmet Ustiin*!, and Sara Hooker*!

ICohere Labs, 2Cohere

Corresponding authors: {danieldsouza, ahmet, sarahooker}@cohere.com

Abstract

One of the most profound challenges of modern machine learning is performing well on the long-
tail of rare and underrepresented features. Large general-purpose models are trained for many
tasks, but work best on high-frequency use cases. After training, it is hard to adapt a model to
perform well on specific use cases underrepresented in the training corpus. Relying on prompt
engineering or few-shot examples to maximize the output quality on a particular test case can be
frustrating, as models can be highly sensitive to small changes, react in unpredicted ways or rely
on a fixed system prompt for maintaining performance. In this work, we ask: Can we optimize our
training protocols to both improve controllability and performance on underrepresented use cases
at inference time? We revisit the divide between training and inference techniques to improve
long-tail performance while providing users with a set of control levers the model is trained to
be responsive to. We create a detailed taxonomy of data characteristics and task provenance to
explicitly control generation attributes and implicitly condition generations at inference time.
‘We fine-tune a base model to infer these markers automatically, which makes them optional
at inference time. This principled and flexible approach yields pronounced improvements in
performance, especially on examples from the long tail of the training distribution. While we
observe an average lift of 5.7% win rates in open-ended generation quality with our markers,
we see over 9.1% gains in underrepresented domains. We also observe relative lifts of up to
14 197 A indarranracantad facke Lila (ndaRonair and ahenlide imnravemente ~f 25 207 ~An lanath




We predict a complex taxonomy of treasure markers, which guides the
model to higher performance.
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Figure 1: T: i into Distributi : (above) illustrates the representation of various length buckets in the

training distribution. (below) demonstrates the flexibility of the marker intervention on the mArena Hard test
distribution. By modifying the <length_bucket>..</length_bucket> marker, the model can effectively tap into
diverse training distributions, even for underrepresented length buckets.
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Prefix conditioning allows for more controllability at
inference time.
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Co-design of both model and interface.

@ Luke Rivard

@RivardLuke

# Introducing Chat Annotator— a free chatbot where users can
highlight parts of responses, leave a comment, and have the model

incorporate that feedback into its next output. Powered by Cohere
Command-A.

Try it here: chatannotator.com

88 Prof. Kyunahvun Cho is the co-founder of
Skymind| he is the co founder| Heep learning
software and solutions. Skymind's main product
is Deepframe, a modular Al hardware solution
designed for large-scale Al model deployment. It
provides an end-to-end platform for building,
training, and running Al applications.

Prof. Cho is also known for his contributions to
the field of machine learning and artificial
intelligence, with a focus on natural language
processing and deep learning. He has published
extensively in these areas and is a highly

chatannotator.com

isthecofounder” s the co founder

tell me about the lisbon machine learning summer school

The Lisbon Machine Leaming School (LML) is a prestigious and intensive summer school focused on machine learning (ML) and artificial
intelligence (Al). It is one of the most renowned events of its kind in Europe, attracting students, researchers, and professionals from around the
world. The school is known for its high-quality lectures, hands-on tutorials, and networking opportunities with leading experts in the field.

Key Details of the Lisbon Machine Learning School:

1. Organizers:
The school is typically organized by the Instituto Superior Técnico (IST) of the University of Lisbon, in collaboration with other
institutions and industry partners.

2. Duration and Format: . §
The program usually lasts 1-2 weeks it is only for 1 week, ‘

Itincludes a mix of lectures, tutorials, practical sessions, and group projects.
The curriculum covers both theoretical foundations and practical applications of machine learning.

3. Target Audience:
. : New message \ "
Advanced undergraduate and graduate students in computer science, mathematics, engineeting, andYelated fields.

o _— : . e VTN




So where does that leave us.



On a big picture level — gradient free improvements are also
more similar to our own intelligence.

- QOur intelligence is not
individual, but collective.

- While our brain develops over
the course of our lifetime,
human intelligence is ever more
collective and expanded based
upon dynamic pooling of
knowledge.

- Coordination of our intelligence
does not require global
updates, it is extremely cheap.
It is driven by our societal ties.




It is very possible that the next breakthrough will require a
fundamentally different way of modelling the world

with a different combination of hardware, software and
algorithm.

1950’s 2012 What next?



Model scale is the least interesting idea to throw at a problem.
Increasingly, we should justify additional complexity and bend
scaling curves by focusing on efficiency.

1950’s 2012 What next?

P94



Our wider space for optimization will further amplify the divide
between academia and industry. If intelligence is about
interaction and continuous adaptation, control of the
environment matters.

At the very least — an expanded optimization space makes our
lives a lot more interesting. There is a lot of fun to be had over
the next 10 years.
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Let's open up
for questions
and discussion.

Feel free to reach out:

sarahookr@gmail.com

~ Cohere For Al



