
Transformers
Sweta Agrawal

swetaagrawal@google.com

My Research

Quick Poll

❏ How familiar are you with transformers?
❏ What is the key building block of transformers?
❏ Have you used it in your projects?
❏ Have you implemented it yourself?

Slide Inspiration: Lucas Beyer

Plan

Session I: Transformers and its nuts and bolts

Attention Mechanism, Architecture Overview

Session II: Application of Transformers

Pre-trained Models, Multi-task and Multimodal models

Slide Inspiration: Dianqi Chen

AI before Transformers - An architecture per task

Slide Inspiration: Lucas Beyer

NLP after Transformers - One type fits all**

Slide Inspiration: Lucas Beyer

The core building block:
Attention

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

All information is
compressed in this one

hidden state

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

At each time step, attend
to the parts of source that

is important

Image Credits: https://jalammar.github.io/illustrated-transformer/

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

Hidden representation of all input
tokens H: [h1, h2, h3, h4]

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

Hidden representation of all input
tokens H: [h1, h2, h3, h4]

Attention scores: current decoder state
[st-1] and H

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

Hidden representation of all input
tokens H: [h1, h2, h3, h4]

Attention scores: current decoder state
[st-1] and H

Attention distribution using softmax

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

Hidden representation of all input
tokens H: [h1, h2, h3, h4]

Attention scores: current decoder state
[st-1] and H

Updated information: weighted
representation of hidden states

Attention distribution using softmax

Introduction of Attention
Neural Machine Translation by Jointly Learning to Align and Translate
(Bahdanau et al., 2015)

Image Credits: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Attention as a soft dictionary lookup

Image Credits: https://codecompass00.substack.com/p/visual-guide-attention-mechanism-transformers

Attention as a soft dictionary lookup

Image Credits: https://codecompass00.substack.com/p/visual-guide-attention-mechanism-transformers

Attention as a soft dictionary lookup

Image Credits: https://codecompass00.substack.com/p/visual-guide-attention-mechanism-transformers

Attention as a soft dictionary lookup

Image Credits: https://codecompass00.substack.com/p/visual-guide-attention-mechanism-transformers

Attention as a dictionary lookup

keys and values - derived from the
same input x

k = Wk ᐧ x v = Wv ᐧ x

queries can be from same or different

q = Wq ᐧ x or Wq ᐧ y

Image Credits: https://jalammar.github.io/illustrated-transformer/

Attention as a dictionary lookup

In practice, we have several queries q[1:m]

Image Credits: https://jalammar.github.io/illustrated-transformer/

prevents dot product to become too large

n x dq dK x n
n x dv

Multi-head attention

Image Credits: https://jalammar.github.io/illustrated-transformer/

dq = dK = dv = d/m
where m is the number of heads

Let’s now try to understand the architecture

The Transformer Architecture

produces representation of x that captures the meaning in context.

Encoder

The Transformer Architecture

generates tokens step-by-step, p(yi|x, y<i), predicting the next
token based on:

- Encoder output (for tasks like translation)
- Previously generated tokens (via self-attention)

Decoder

The Transformer Architecture

Encoder-Decoder

Input Tokenization

Encoder

The monkey ate the banana because it was hungry.

[_The] [_mon] [_key] …

Convert to indices

[723 619 ..]

Encode each entry to a d-dimension vector using
the embedding look-up table

Slide Inspiration: Lucas Beyer

Positional Encoding - Order matters in language

Encoder

The monkey ate the banana

vs

The banana ate the monkey

[0 1 2 …]

Encode into d-dimension vector and shift input
embeddings by this vector

Slide Inspiration: Lucas Beyer

Relative Positional Embeddings (Shaw et al., 2018)

Capture the relative distance between key and value pairs

Rotatory Positional Embeddings (Su et al., 2021)

Uses both absolute and
relative information

Multi-headed “Self-attention”

Encoder

Encode each input element as Key, Query and
Values

mon
key

Slide Inspiration: Lucas Beyer

Multi-headed “Self-attention”

Encoder

Encode each input element as Key, Query and
Values

Image Credits: https://jalammar.github.io/illustrated-transformer/

mon
key

Multi-headed “Self-attention”

Encoder

Image Credits: https://jalammar.github.io/illustrated-transformer/

mon
key

Multi-headed “Self-attention”

Encoder

Image Credits: https://jalammar.github.io/illustrated-transformer/
Tensor2Tensor Visualization: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/visualization/TransformerVisualization.ipynb

https://jalammar.github.io/illustrated-transformer/
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/visualization/TransformerVisualization.ipynb

Feed Forward - A simple transformation to each token

Encoder

This is where most of the work happens..

d_ff = 4 x d

Slide Inspiration: Lucas Beyer

Feed Forward - A simple transformation to each token

Encoder

This is where most of the work happens..

Slide Inspiration: Lucas Beyer

Add: A residual connection (skip connection): Helps gradients flow
through deep networks → combats vanishing gradients

Norm: A Layer Normalization which keeps output scale consistent,
→ speeds up and stabilizes training [Pre- Vs Post- Norm]

Add & Norm

Encoder

Slide Inspiration: Lucas Beyer

The Encoder: heavily processed version of “input”

Encoder

Slide Inspiration: Lucas Beyer

The Decoder

Decoder

generates tokens step-by-step, predicting the next token
probability p(yi|x, y<i) based on:

The Decoder

Decoder

generates tokens step-by-step, predicting the next token
probability p(yi|x, y<i) based on:

- Previously generated tokens (via masked self-attention)

The Decoder - Masked Multi-head self-attention

Decoder

generates tokens step-by-step, predicting the next token
probability p(yi|x, y<i) based on:

- Previously generated tokens

The Decoder

Decoder

generates tokens step-by-step, predicting the next token
probability p(yi|x, y<i) based on:

- Previously generated tokens (via masked self-attention)
- Encoder output (for tasks like translation)

keys and values - derived from the hidden states
of the encoder x

k = Wk ᐧ hx v = Wv ᐧ hx

queries are from hidden state of the decoder

q = Wq ᐧ hy

The Decoder - Cross Attention

Decoder

https://www.geeksforgeeks.org/nlp/cross-attention-mechanism-in-transformers/

The Decoder

Decoder

predict the next token probability p(yi|x, y<i)

https://lena-voita.github.io/nlp_course/language_modeling.html

Training with Cross-entropy loss

Encoder-Decoder

https://poloclub.github.io/transformer-explainer/

At generation time - One token at a time

https://lena-voita.github.io/nlp_course/language_modeling.html

At generation time - One token at a time

https://huggingface.co/blog/not-lain/kv-caching

KV cache

https://huggingface.co/blog/not-lain/kv-caching

At generation time - One token at a time

https://lena-voita.github.io/nlp_course/language_modeling.html

At generation time - One token at a time [Sampling]

https://lena-voita.github.io/nlp_course/language_modeling.html

At generation time - One token at a time [Topk, Top-p]

https://lena-voita.github.io/nlp_course/language_modeling.html

At generation time - Search [Beam]

Transformer outperforms many diverse architecture and
is efficient

Transformer outperforms many diverse architecture and
is efficient

 O(nd2+n2d) + O(nd2)

Is it truly efficient?

Efficient Transformers

The Inference Bottleneck: The KV Cache Size
Introduce: Multi-Query Attention

In multi-query attention, the heads for keys and values are averaged so that all query heads
share the same key and value head.

Fast Transformer Decoding: One Write-Head is All You Need [Shazeer et al., 2019]

The Inference Bottleneck: The KV Cache Size
Introduce: Grouped-Query Attention

In GQA instead of all heads sharing one K/V pair, a few heads share a K/V pair.

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints [Ainslie et al., 2023]

Summary Visualization

DecoderEncoder

Visualization: https://jalammar.github.io/illustrated-transformer/

Transformers Applied - II
The surge of pretrained
models

Change of Paradigm
What did transformers enable?

Scalability Generalizability Reasoning Long range Multimodal

GPT-1: Generative Pre-trained Transformer Architecture

- 117 million parameters
- decoder-only
- trained on the Common Crawl, a massive dataset of web pages with

billions of words, and the BookCorpus dataset, a collection of over
11,000 books on a variety of genres.

Improving Language Understanding by Generative Pre-Training [Radford et al., 2018]

https://commoncrawl.org/

GPT-1: Discriminative Finetuning

Improving Language Understanding by Generative Pre-Training [Radford et al., 2018]

✅ Unsupervised Pre-training Works.
✅ A Single Model Can Generalize.

Enter BERT: Bidirectional Encoder Representations from
Transformers

Introduction of deeply “contextualized word embeddings”

Pre-training over a large amount of “text” data

BERT Training

Masked Language Prediction

BERT Training: Masked Language Modeling

Masked Language Prediction

select 15% of the input tokens and follow the
80/10/10 rule:

- 80% of the time with the "[MASK]" token.
- 10% of the time with a random token from the

vocabulary.
- 10% of the time with the original token itself.

BERT Training: Next Sentence prediction

Next Sentence Prediction

Sample two segments and predict whether B follows A
- 50% of the time sample a text segment of 512

tokens (Yes)
- 50% of time a segment of 256 tokens followed by

unrelated text segment of 256 tokens (No)

NSP is unnecessary (Joshi et al., 2019, Liu et al. 2019)

What to mask and how much to mask?

SpanBERT (Joshi et al., 2019) Wettig et al., 2023

Using BERT for downstream tasks

Using BERT for downstream tasks

🧾 Sentence/Document-Level Tasks

● Use [CLS] token as the summary of the input.
● Pass it to a classifier (d x |C|) for overall prediction.

E.g., Sentiment Analysis.

Using BERT for downstream tasks

🔁 Text Pair Tasks

● Format input as:
 [CLS] Sentence A [SEP] Sentence B [SEP]

● Use [CLS] token output for final prediction.
E.g., Natural Language Inference.

Using BERT for downstream tasks

🧩 Token-Level Tasks

● Use each token’s output from BERT
● Apply a classifier on each token
● E.g., Named Entity Recognition.

BERT variants

RobertA

- Dynamic masking: recompute masks at each epoch
- use 160GB data instead of 16GB

DistilBERT - distil inform from a “big” teacher model to a “small” student model

ELECTRA

- generator/discriminator framework
- more efficient

BERTology

What Knowledge Does BERT Have?
Syntactic, Semantic or World

What can we learn from looking at its
attention heads?

What can we learn
about training

(efficient) BERT?

https://www.cs.utexas.edu/~gdurrett/courses/sp2021/lectures/lec18-1pp.pdf

T5 Architecture (Raffel et al., 2019)

❝ Convert every task — classification, summarization, translation,
QA — into a text generation task. ❞

T5 Architecture (Raffel et al., 2019)

❝ Convert every task — classification, summarization, translation,
QA — into a text generation task. ❞

60M to 11B

T5 Training (Raffel et al., 2019)

T5 Training (Raffel et al., 2019)

T5 Training (Raffel et al., 2019)

Impact of T5

BART Model (Lewis et al., 2019)

The GPT-3 Era

Scale Is All You Need: Model with 175 billion parameters, trained on a
broad corpus of web text

General-Purpose Model: One model, many tasks — without
task-specific training

Prompt-Based Learning: Shifted NLP from fine-tuning to in-context
learning

Language Models are Few-Shot Learners [Brown et al., 2020]

The GPT-3 Era

Language Models are Few-Shot Learners [Brown et al., 2020]

The GPT-3 Era

Language Models are Few-Shot Learners [Brown et al., 2020]

The GPT-3 Era

Language Models are Few-Shot Learners [Brown et al., 2020]

The GPT-3 Era

Language Models are Few-Shot Learners [Brown et al., 2020]

The Prompt Report: A Systematic Survey of Prompt
Engineering Techniques (Schulhoff et al., 2024)

What makes in-context learning work?

➔ Task-recognition

The prompt Translate English to French. sea otter => loutre de mer... acts as a
query.

➔ Task-learning

It then activates the specific neural pathways related to the "translation" skill
and applies that learned pattern to your new input (cheese => fromage).

What makes in-context learning work?

Results

Language Models are Few-Shot Learners [Brown et al., 2020]

Computational Cost

The ERA of
Pretrained Models

Evaluation of LLMs & The surge of “Benchmarks”

Transformers in Vision

Input image RH×W×C, where H,W,C
are height, width, channel

split into square-shaped patches of type
RP×P×C

Slide Inspiration: Lucas Beyer

Transformers in Audio

Slide Inspiration: Lucas Beyer

Reinforcement Learning

Cast any RL problem as a
sequence modeling task

Slide Inspiration: Lucas Beyer

Transformers - Everything everywhere all at once

Anything once tokenized, can be passed through transformers

Slide Inspiration: Lucas Beyer

Transformers - Everything everywhere all at once

Slide Inspiration: Lucas Beyer

Image Credits: https://datasciencedojo.com/blog/llm-use-cases-top-10/

Thank you!

